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RESUMEN

En un régimen parlamentario, la ley electoral debe especificar la forma de distribuir los escaños disponi-
bles entre los partidos que concurren a las elecciones, de manera que su representación política responda
al apoyo que han recibido de los electores. Las distintas leyes electorales españolas hacen uso para ello
la ley d’Hondt; se trata, sin embargo, de un algoritmo demostrablemente mejorable. En este artículo se
describe y se justifica una solución más apropiada.

Palabras Clave: LEYES ELECTORALES; LEY D’HONDT; DIVERGENCIAS EN �K ; DIVERGENCIA

ENTRE DISTRIBUCIONES DE PROBABILIDAD; DISCREPANCIA INTRÍNSECA.

1. INTRODUCCIÓN

Los resultados de últimas elecciones autonómicas catalanas, en las que una formación política
(CiU) obtuvo el mayor número de escaños (46 con el 30.93% de los votos) a pesar de ser
superada en votos por otra formación política (el PSC, 42 escaños con el 31.17% de los votos)
pusieron de manifiesto, una vez más, la falta de idoneidad de nuestras leyes electorales.

En los regímenes parlamentarios, una ley electoral viene definida cuatro elementos bien
diferenciados: (i) el número total de escaños del parlamento, (ii) su posible distribución por
circunscripciones, (iii) el porcentaje mínimo de votos que debe tener un partido para poder optar
a algún escaño, y (iv) el algoritmo utilizado para distribuir los escaños entre los partidos que
superan ese umbral. Por ejemplo, en el caso catalán, la ley electoral vigente (aprobada como
provisional para las primeras elecciones tras la dictadura franquista, pero nunca modificada)
ordena distribuir los 135 escaños de su Parlamento en cuatro circunscripciones (Barcelona,
Girona, Lleida y Tarragona con 85, 17, 15 y 18 escaños cada una, respectivamente), exige
al menos un 3% de los votos válidos en toda Cataluña para poder optar a representación
parlamentaria, y utiliza la ley d’Hondt para, en cada una de las circunscripciones, distribuir
los escaños que le corresponden entre los partidos que han superado el umbral del 3% (PSC,
CiU, ERC, PP e ICV en las elecciones del 16 de Noviembre de 2003).
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el Proyecto BNF2001-2889 de la DGICYT, Madrid.
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De los cuatro elementos que definen la ley electoral, los tres primeros deben ser el resultado
de una negociación política en la que es necesario valorar argumentos de índole muy diversa. Un
parlamento muy numeroso permite un reflejo más preciso del apoyo obtenido por las distintas
fuerzas políticas, pero es más costoso y puede resultar menos operativo. La partición del
territorio en circunscripciones permite garantizar una representación mínima para cada circuns-
cripción, pero limita seriamente la proporcionalidad del resultado final: cuanto menores sean
las circunscripciones electorales, mayor será la ventaja relativa de los partidos grandes frente a
los pequeños, cualquiera que sea el mecanismo con el que se atribuyan los escaños (Bernardo,
1999). La existencia de un nivel umbral simplifica las posibles negociaciones entre los partidos,
pero puede distorsionar la pluralidad política expresada por los resultados electorales. Sin
embargo, el último elemento, el algoritmo utilizado para la asignación de escaños es la solución
a un problema técnico y debería ser discutido en términos técnicos. Es matemáticamente
verificable que la Ley d’Hondt no es la solución más adecuada.

Una vez especificado el número de escaños atribuidos a cada circunscripción, todas las leyes
electorales pretenden distribuirlos entre los partidos que han alcanzado el umbral requerido de
forma que su representación política responda al apoyo que han recibido de los electores.
Idealmente, el porcentaje de escaños atribuidos a cada partido en una circunscripción debería
ser proporcional al número de votos que han obtenido es esa circunscripción. En este sentido,
el artículo 68.3 de la Constitución española especifica que la atribución de diputados en cada
circunscripción se realizará “atendiendo a criterios de representación proporcional”. Conse-
cuentemente, si fuese posible, el porcentaje de escaños obtenido por cada partido debería
coincidir con el porcentaje de votos que han obtenido entre los conseguidos por todos los
partidos que han superado el umbral requerido (y que tienen, por lo tanto, derecho a entrar en el
reparto de escaños). Naturalmente, la coincidencia exacta no es posible en general, debido a que
los escaños atribuidos deben ser números enteros no negativos. La Ley d’Hondt proporciona
una posible aproximación, pero se trata de una aproximación manifiestamente mejorable. En
este artículo se describe un algoritmo que permite obtener una solución al problema planteado
que puede ser defendida en la práctica como la única solución apropiada desde el punto de vista
matemático (para una descripción no técnica del problema, véase Bernardo, 2004). En general,
la solución matemáticamente correcta no coincide con la proporcionada por la Ley d’Hondt,
que debería ser eliminada de nuestras leyes electorales “por imperativo constitucional”.

La asignación óptima de escaños, esto es la distribución de escaños más parecida a la
distribución de votos, en el sentido (matemáticamente preciso) de minimizar la divergencia entre
las distribuciones porcentuales a las que dan lugar, puede ser determinada mediante un sencillo
algoritmo, que llamaremos de mínima discrepancia. En general, el resultado puede depender
de la forma en que decida medirse la divergencia entre dos distribuciones de probabilidad.
En la Sección 2 se describen las medidas de divergencia más usuales entre distribuciones de
probabilidad, y se argumenta la idoneidad de la discrepancia intrínseca, basada en la teoría de
la información. En la Sección 3 se ilustra mediante un ejmeplo real como, en la práctica, la
solución óptima es esencialmente independiente de la definición de divergencia que se utilice,
se describe un algoritmo que permite determinarla con facilidad, y se analizan críticamente los
resultados obtenidos. En la Sección 4 se mencionan otros problemas matemáticos asociados a
los procesos electorales, y se ofrecen referencias adicionales.

2.DIVERGENCIA ENTRE DISTRIBUCIONES DE PROBABILIDAD

Tanto en teoría de la probabilidad y como en estadística matemática resulta frecuentemente
necesario medir, de forma precisa, el grado de disparidad (divergencia) entre dos distribuciones
de probabilidad de un mismo vector aleatorio, x ∈ X .
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Definición 1. Una función real �{p, q} es una medida de la divergencia entre dos distribuciones
de un vector aleatorio x ∈ X con funciones probabilidad (o de densidad de probabilidad) p(x)
y q(x) si, y sólamente si,

(i) es simétrica: �{p, q } = �{q, p }
(ii) es no-negativa: �{p, q } ≥ 0

(iii) �{p, q } = 0 si, y sólamente si, p(x) = q(x) casi por todas partes.

Existen muchas formas de medir la divergencia entre dos distribuciones de probabili-
dad. Limitando la atención al caso discreto finito, que es el único relevante para el problema
estudiado en este trabajo, una medida de divergencia entre dos distribuciones de probabilidad
p = {p1, . . . , pk} y q = {q1, . . . , qk}, con 0 ≤ pj ≤ 1 y

∑k
j=1 pj = 1, 0 ≤ qj ≤ 1 y∑k

j=1 qj = 1, es cualquier función real �{p, q } simétrica y no-negativa, tal que �{p, q } = 0
si, y sólamente si, pj = qj para todo j.

En principio, cualquier medida de divergencia entre vectores de �k (sea o no sea una
distancia métrica) podría ser utilizada. Entre las medidas de divergencia más conocidas, están
la distancia euclídea

�e{p, q } =
( ∑k

j=1
(pj − qj)2

)1/2
, (1)

la distancia de Hellinger

�h{p, q } = 1
2

∑k

j=1
(
√

pj −
√

qj)2
)
, (2)

y la norma L∞
�∞{p, q } = max

j
|pj − qj |. (3)

Sin embargo, parece más razonable utilizar una medida de divergencia que tenga en cuenta
el hecho de que p y q no son vectores arbitrarios de �k, sino que se trata, especifícamente,
de distribuciones de probabilidad. Existen importantes argumentos axiomáticos, basados en
la teoría de la información (ver Bernardo, 2005 y referencias allí citadas) para afirmar que la
medida de divergencia entre distribuciones de probabilidad más apropiada es la discrepancia
intrínseca (Bernardo y Rueda, 2002):

Definición 2. La discrepancia intrínseca δ{p, q } entre dos distribuciones de probabilidad
discretas, p = {pj, j ∈ J} y q = {qj, j ∈ J}, es la función simétrica y no-negativa

δ{p, q } = min
{

k{p | q }, k{q |p }
}

, (4)

donde
k{q |p } =

∑
j∈J

pj log
pj

qj

. (5)

Como resulta inmediato de su definición, la discrepancia intrínseca es el mínimo valor medio
del logaritmo del cociente de probabilidades de las dos distribuciones comparadas. Puesto que
para cualquier ε > 0 suficientemente pequeño, log(1 + ε) ≈ ε, una pequeña discrepancia de
valor ε indica un mínimo cociente esperado de probabilidades del orden de 1 + ε, esto es un
error relativo medio de al menos 100ε%.

La definición de discrepancia intrínseca se generaliza sin dificultad al caso de vectores
aleatorios continuos, y puede utilizarse para definir un nuevo tipo de convergencia para distribu-
ciones de probabilidad que goza de propiedades muy interesantes (Bernardo (2005).
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La función k{q |p } que aparece en la Definición 2 es la divergencia logarítmica de q
con respecto de p (Kullback-Leibler, 1951), o entropía cruzada. En particular, la discrepancia
intrínseca δ{p, p0 } entre una distribución discreta finita p = {p1, . . . , pk} y la distribución
uniforme p0 = {1/k, . . . , 1/k} es

δ{p, p0 } = k{p0 |p } = log k − H(p),

donde H(p) = −
∑k

j=1 pj log pj es la entropía de la distribución p, de forma que δ{p, p0 } es
precisamente la cantidad de información contenida en p , esto es la diferencia entre la máxima
entropía posible (en el caso discreto finito), H(p0) = log k correspondiente a la distribución
uniforme, y la entropía H(p) de la distribución p, (Shannon, 1948; Kullback, 1959). En general,
la discrepancia intrínseca δ{p, q } es la mínima cantidad de información necesaria, en unidades
naturales de información o nits (en bits si se utilizan logaritmos en base 2), para discriminar
entre p y q.

Es importante subrayar que la discrepancia intrínseca está bien definida incluso cuando el
soporte de una de las distribuciones está estrictamente contenido en el soporte de la otra, lo que
permite utilizarla para medir la bondad de muchos tipos de aproximaciones entre distribuciones
de probabilidad.

Ejemplo 1. Aproximación Poisson a una distribución Binomial.
La discrepancia intrínseca entre una distribución Binomial Bi(r |n, θ) =

(n
r

)
θr(1 − θ)n−r,

0 < θ < 1, y su aproximación Poisson, Pn(r |nθ) = e−nθ(nθ)r/r! viene dada por

δ{Bi(· |n, θ), Pn(· |nθ)} = δ{n, θ} =
n∑

r=0

Bi(r |n, θ) log
Bi(r |n, θ)
Pn(r |nθ)

,

puesto que la otra suma diverge, debido a que el soporte de la distribución de Binomial,
{0, 1, . . . , n}, está estrictamente contenido en el soporte de la distribución de Poisson, {0, 1, . . .}.
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Figura 1. Aproximación Poisson a una distribución Binomial

En la Figura 1 se representa el valor de δ{n, θ} como función de θ para distintos valores de n.
Es inmediato observar que, contra lo que muchos parecen creer, la única condición esencial para
que la aproximación sea buena es que el valor θ sea pequeño: el valor de n es prácticamente
irrelevante. De hecho, cuando n crece, la discrepancia intrínseca converge rápidamente a
δ{∞, θ} = 1

2[−θ − log(1 − θ)], de forma que para θ fijo, el error de la aproximación no
puede ser menor que ese límite por grande que sea el valor de n. Por ejemplo, para θ = 0.05,
δ{3, θ} ≈ 0.00074, y δ{∞, θ} ≈ 0.00065, de forma que, para todo n ≥ 3, el error relativo
medio de aproximar Bi(r |n, 0.05) por Pn(r |n0.05) es del orden del 0.07%.
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El concepto de discrepancia intrínseca permite proponer una definición general del grado
de asociación entre dos vectores aleatorios cualesquiera.

Definición 3. La asociación intrínseca αxy = α{p(x,y)} entre dos vectores aleatorios
discretos x, y con función de probabilidad conjunta p(x,y) es la discrepancia intrínseca
αxy = δ{pxy, pxpy} entre su función de probabilidad conjunta p(x,y) y el producto de
sus funciones de probabilidad marginales, p(x)p(y).

Como en el caso de la discrepancia intrínseca, la medida de asociación intrínseca es
inmediatamente generalizable al caso de vectores aleatorios continuos.

Ejemplo 2. Medida de asociación en una tabla de contingencia.
Sea P = {πij = Pr[xi, yj ]}, con i ∈ {1, . . . , n}, j ∈ {1, . . . , m}, 0 < πij < 1, y∑n

i=1
∑m

j=1 πij = 1, la matriz de probabilidades asociada a una tabla de contingencia de
tamaño n × m, y sean α y β las correspondientes distribuciones marginales, de forma que
α = {αi = Pr[xi] =

∑m
j=1 πij}, y β = {βj = Pr[yj ] =

∑n
i=1 πij}. La medida de asociación

intrínseca entre las variables aleatorias x e y que definen la tabla es

δ{P} = δ
{
{πij}, {αiβj}

}
= min

{
k{P}, k0{P}

}
con k{P} =

∑n
i=1

∑m
j=1 πij log[πij/(αiβj)], y k0{P} =

∑n
i=1

∑m
j=1 αiβj log[(αiβj)/πij ].

El valor δ{P} = 0 se obtiene si, y sólamente si, las variables aleatorias x e y son independientes.

Tabla 1. Asociación intrínseca en tablas de contingencia 2 × 2.

P = {πij} k{P} k0{P} δ{P}(
0.980 0.005
0.010 0.005

)
0.015 0.007 0.007(

0.3 0.2
0.1 0.4

)
0.086 0.093 0.086(

αβ α(1 − β)
(1 − α)β (1 − α)(1 − β)

)
0 0 0

limε→0

(
1/2 − ε ε

ε 1/2 − ε

)
log 2 ∞ log 2

Obsérvese que el mínimo puede ser alcanzado mediante cualquiera de las dos sumas, k{P} o
k0{P}. Por ejemplo, con m = n = 2, el mínimo se alcanza mediante k0{P} con la primera
matriz de probabilidades de la Tabla 1, pero se alcanza mediante k{P} con la segunda. En
el tercer ejemplo las variables aleatorias son independientes y, consecuentemente, δ{P} = 0.
Cuando m = n = 2, α{P} < log 2; la asociación intrínseca correspondiente a la matriz del
cuarto ejemplo tiende a log 2 cuanto ε tiende a 0 y, consecuentemente, las variables aleatorias
correspondientes tienden a una situación de máxima dependencia.

Tanto desde el punto de vista axiomático como desde el punto de vista de su comportamiento
práctico (ilustrado en los ejemplos anteriores de la aproximación binomial y de la medida de
asociación en tablas de contingencia), es posible afirmar que la discrepancia intrínseca es la
forma más apropiada de medir la divergencia entre distribuciones de probabilidad.

En la próxima sección, se analizan las consecuencias de utilizar las distintas medidas de
divergencia entre distribuciones consideradas en esta sección para determinar la forma óptima
de distribuir los escaños de forma aproximadamente proporcional a los resultados electorales.
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3. LA SOLUCIÓN ÓPTIMA

La asignación óptima es escaños es, por definición, aquella que proporciona una distribución
de escaños más parecida a la distribución de votos en el sentido de minimizar la divergencia
entre las distribuciones de probabilidad (de votos y de escaños) a que dan lugar. El resultado,
en general, depende de la medida de divergencia utilizada.

Considérese primero el caso más sencillo no trivial, en el que hay que asignar dos escaños
y en el que solamente concurren dos partidos A y B que han obtenido, respectivamente, una
proporción p y 1 − p de los votos. Sin pérdida de generalidad, supónganse que 0.5 < p < 1,
de forma que A es el partido más votado. Se trata de decidir a partir de que valor p0 deberían
asignarse al partido A los dos escaños en disputa. Es fácil comprobar que la ley d’Hondt asigna
los dos escaños al partido mayoritario si (y solamente si) p ≥ 2/3.

La distribución de votos entre los partidos A y B es (p, 1− p). Si se asigna uno de los dos
escaños al partido A, la distribución de escaños será (1/2, 1/2), mientras que si se le asignasen
los dos escaños al partido A la distribución de escaños sería (1, 0). Consecuentemente, se trata
de comparar la divergencias �1(p) = �{(p, 1− p), (1/2, 1/2)} y �2(p) = �{(p, 1− p), (1, 0)} y
tomar, para cada valor de p, la menor de ellas; el punto de corte será el valor p0 tal que �1(p0) =
�2(p0). En la Tabla 2, se recogen los puntos de corte correspondientes a las distintas medidas
de divergencia consideradas (el valor exacto del punto corte para la distancia de Hellinger es
(2+

√
2)/4 ≈ 0.853; el punto de corte correspondiente a la discrepancia intrínseca es la solución

de la ecuación transcendente log(2p) = H(p), donde H(p) = −p log p−(1−p) log(1−p) es la
entropía de la distribución (p, 1−p); el valor de esa solución es, aproximadamente, p0 = 0.811.

Tabla 2. Puntos de corte para la asignación de dos escaños con distintas medidas de divergencia.

d’Hondt Intrínseca Euclídea Hellinger L∞

2/3 0.811 3/4 0.853 3/4

Como puede observarse, la Ley d’Hondt favorece claramente al partido mayoritario, asignándole
los dos escaños en disputa a partir de los 2/3 de los votos, cuando todas funciones matemáticas
de divergencia propuestas lo hacen solamente a partir de los 3/4 (y la divergencia intrínseca,
axiomáticamente justificable, a partir del 81%).

Considérese ahora la situación general, en la que un total de t escaños deben ser repartidos
entre k partidos cuya distribución relativa de votos ha sido p = {p1, . . . , pk}, con 0 < pi < 1,
y

∑k
j=1 pj = 1. La distribución óptima de los t escaños es aquella solución posible, esto es de

la forma e = {e1, . . . , ek}, con todos los ej’s enteros no negativos, y con
∑k

j=1 ej = t, que da
lugar a la distribución relativa de escaños q = {q1, . . . , qk}, con qj = ej/t, más próxima a p. La
solución óptima, por lo tanto, es aquella que minimiza, en el conjunto de todas las soluciones
posibles, la divergencia �{p, q} entre p y q. Como se ha ilustrado en el caso particular de
t = 2 escaños a repartir, la solución, en general, depende de la medida de divergencia entre
distribuciones que se decida utilizar.

La solución ideal es la que distribuiría los escaños de forma exactamente proporcional a
los votos obtenidos; en general, la solución ideal no suele ser una solución posible porque,
en general, no da lugar a números enteros enteros. Sin embargo, utilizando las propiedades
matemáticas de las medidas de discrepancia, es posible demostrar que, cualquiera que sea
el criterio de divergencia utilizado, la solución óptima entre las soluciones posibles debe
pertenecer al entorno entero de la solución ideal, constituido por todas las combinaciones
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de sus aproximaciones enteras no-negativas, por defecto y por exceso, cuya suma sea igual al
número t de escaños a repartir. Consecuentemente, la determinación de la solución óptima sólo
requiere calcular las divergencias correspondientes a unas pocas soluciones posibles.

Como podría esperarse, las diferencias entre los resultados obtenidos para distintas medidas
de divergencia tienden a desaparecer cuando aumenta el número de escaños a repartir y, en
la práctica, proporcionan una misma solución (la solución óptima para cualquier medida de
divergencia) en casi todos los casos reales, que puede ser determinada mediante un sencillo
algoritmo. Este algoritmo, que llamaremos de mínima discrepancia, se reduce a determinar
para cada partido, las diferencias absolutas entre la solución ideal y sus dos aproximaciones
enteras, escogiendo sucesivamente los escaños atribuidos a cada partido por orden creciente de
tales diferencias, y determinándose por diferencia los escaños que deben ser atribuidos al último
partido que resulte en este proceso.

Tabla 3. Algoritmo de asignación de escaños. Lleida 2003.

Lleida (15 escaños) PSC CiU ERC PP ICV Total

Votos 45214 83636 40131 19446 8750 197177
Porcentaje de votos 22.93 42.42 20.35 9.96 4.44 100.00

Solución ideal 3.44 6.36 3.05 1.48 0.67 15
Límites inferiores 3 6 3 1 0 13

Límites superiores 4 7 4 2 1 18
Diferencias absolutas inferiores 0.44 0.36 0.05 0.48 0.67

Diferencias absolutas superiores 0.56 0.64 0.95 0.52 0.33

Solución óptima 3 6 3 2 1 15
Porcentaje de escaños 20.00 40.00 20.00 13.33 6.67 100.00

Solución d’Hondt 4 7 3 1 0 15
Porcentaje de escaños 26.67 46.67 20.00 6.67 0.00 100.00

Para ilustrar el algoritmo descrito se utilizan a continuación los resultados en la provincia
de Lleida de las elecciones autonómicas catalanas de 2003 (ver Tabla 3). En ese caso, los votos
finalmente obtenidos por los cinco partidos que podían optar a representación parlamentaria
{PSC, CiU, ERC, PP, ICV} fueron, en ese orden, {45214, 83636, 40131, 19446, 8750}, es
decir {22.93, 42.42, 20.35, 9.86, 4.44} si los resultados se expresan en porcentaje de los votos
obtenidos en Lleida por el conjunto de esos cinco partidos. La ley electoral vigente atribuye a
Lleida 15 de los 135 escaños del parlamento catalán; para que su distribución fuese exactamente
proporcional {PSC, CiU, ERC, PP, ICV} deberían recibir {3.44, 6.36, 3.05, 1.48, 0.67} escaños
respectivamente; esta sería la solución ideal. Se trata de aproximar estos valores por números
enteros, para convertir esta solución ideal en una solución posible, y hacerlo de forma que el
resultado represente una distribución porcentual de escaños cercana a la distribución porcentual
de votos. El entorno entero de la solución ideal está constituido por las 10 únicas formas de
asignar los 15 escaños de manera que el PSC tenga 3 o 4, CiU 6 o 7, ERC 3 o 4, PP 1 o 2 e
ICV 0 o 1. La menor de las diez diferencias absolutas es 0.05, que corresponde a asignar 3
escaños a ERC; la menor de las ocho diferencias correspondientes a los cuatro partidos restantes
es 0.33, que corresponde a asignar 1 escaño a ICV; la menor de las seis restantes es 0.36, que
corresponde a asignar 6 escaños a CiU; la menor de las cuatro restantes es 0.44 que corresponde
a asignar 3 escaños al PSC; finalmente, los 2 escaños restantes deben ser atribuidos al único
partido cuyos escaños no han sido identificados todavía, el PP. La solución encontrada es



J. M. Bernardo. Las matemáticas en los procesos electorales 8

0 0.5 1 1.5

�3, 6, 3, 2, 1��4, 6, 3, 1, 1��3, 7, 3, 1, 1��3, 6, 4, 1, 1��4, 5, 3, 2, 1��4, 6, 2, 2, 1��3, 7, 2, 2, 1��4, 7, 2, 1, 1��3, 5, 4, 2, 1��4, 5, 4, 1, 1��2, 7, 3, 2, 1��3, 8, 2, 1, 1��5, 5, 3, 1, 1��2, 6, 4, 2, 1��2, 7, 4, 1, 1��5, 6, 2, 1, 1��2, 8, 3, 1, 1��3, 5, 3, 3, 1��3, 6, 3, 1, 2��4, 6, 3, 2, 0��3, 5, 5, 1, 1��3, 7, 3, 2, 0��3, 6, 2, 3, 1��5, 5, 2, 2, 1��4, 7, 3, 1, 0��4, 4, 4, 2, 1��3, 5, 3, 2, 2��2, 8, 2, 2, 1��4, 5, 3, 1, 2��3, 6, 4, 2, 0�
Figura 2. Lleida 2003. Discrepancia relativa de distintas soluciones posibles para la distribución de
sus 15 escaños con respecto a la solución d’Hondt.

atribuir {3, 6, 3, 2, 1} escaños a {PSC, CiU, ERC, PP, ICV}respectivamente, lo que representa
el {20.00, 40.00, 20.00, 13.33, 6.67} por ciento de los escaños.

La ley d’Hondt produce una asignación de {4, 7, 3, 1, 0} escaños, lo que representa el
{26.67, 46.67, 20.00, 6.67, 0.00} por ciento de los escaños. Puede comprobarse que, cualquiera
que sea el criterio utilizado, la distribución porcentual de escaños correspondiente a la solución
propuesta {20.00, 40.00, 20.00, 13.33, 6.67} está más próxima a la distribución porcentual de
votos, {22.93, 42.42, 20.35, 9.86, 4.44} que la correspondiente a la ley d’Hondt. De hecho,
hemos comprobado que, entre las 3876 soluciones posibles, existen 24 asignaciones mejores
que la proporcionada por la Ley d’Hondt, en el sentido de que dan lugar a una distribución
porcentual de escaños más próxima a la distribución porcentual de votos. En La Figura 2 se
listan las 30 mejores distribuciones de escaños para Lleida 2003, donde puede observarse que
la solución d’Hondt ocupa el lugar 25; en la derecha de la figura se representa la discrepancia
intrínseca respecto a la solución ideal de cada una de estas soluciones, utilizándose como
unidad la discrepancia intrínseca de la solución d’Hondt. En particular, la solución óptima,
{3, 6, 3, 2, 1}, está a 0.0120 nits (unidades naturales de información) de la solución ideal, el
21.7% de los 0.0552 nits a que se sitúa la solución d’Hondt, {4, 7, 3, 1, 0}. Puede comporbarse
(ver Tabla 4) que con las demás medidas de divergencia estudiadas en la Seccíon 2 se obtienen
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Tabla 4. Divergencias con la solución ideal. Lleida 2003.

Solución PSC CiU ERC PP ICV Hellinger Intrínseca Euclídea L∞

Ideal 3.44 6.36 3.05 1.48 0.67 0 0 0 0
Óptima 3 6 3 2 1 0.0031 0.0120 0.0562 0.52

d’Hondt 4 7 3 1 0 0.0250 0.0552 0.0788 0.67

resultados cualitativamente similares, poniendo expresamente de manifiesto la inferioridad de
la solución d’Hondt.

Resulta interesante analizar la composición del parlamento catalán que se hubiese obtenido
si los escaños hubiesen sido asignados de forma óptima en lugar de utilizar la Ley d’Hondt.
Los partidos mayoritarios PSC y CiU hubieran perdido un escaño cada uno en favor de los dos
minoritarios, PP e ICV; en particular, ICV hubiera conseguido representación en toda Cataluña.
El resultado final hubiese sido {40, 43, 22, 16, 14} en lugar de {41, 44, 22, 15, 13}.

Como podría esperarse, las diferencias entre la solución óptima y la ley d’Hondt tienden a
desaparecer cuando aumenta el número de escaños a repartir. Por ejemplo, la solución d’Hondt
para la distribución de los 85 escaños de la provincia de Barcelona en esas mismas elecciones,
coincide con la solución óptima. Recíprocamente, las diferencias tienden a aumentar cuando
en número de escaños a repartir disminuye.

El algoritmo descrito en esta sección proporciona siempre la solución óptima cuando se
utiliza la distancia euclídea como medida de divergencia pero, como se ha ilustrado en el caso
de Lleida, esta solución es generalmente también la solución óptima con respecto a cualquier
otra medida de divergencia cuando el número de escaños a distribuir (como típicamente sucede
en la práctica en España) no es extremadamente pequeño.

Finalmente, debe señalarse una ventaja política importante del algoritmo de discrepancia
mínima: su extraordinaria sencillez. En marcado contraste con la Ley d’Hondt (que muy
pocos ciudadanos saben utilizar, y que tan sólo los especialistas pueden pretender justificar), el
algoritmo de discrepancia mínima es inmediatamente aplicable por cualquier ciudadano, y le
permite apreciar con facilidad que se trata la mejor aproximación posible a la solución ideal.
La substitución de la Ley d’Hondt por el algoritmo de mínima discrepancia contribuiría pues
de dos formas distintas a perfeccionar nuestro sistema electoral; por una parte, haría las leyes
electorales más próximas a la comprensión del ciudadano; por otra las haría más cercanas al
mandato constitucional de proporcionalidad.

4. OTROS PROBLEMAS

La teoría de la probabilidad y la estadística matemática (y, muy especialmente, los métodos
bayesianos objetivos) permiten ofrecer soluciones a muchos más problemas relacionados con
los procesos electorales; este trabajo concluye mencionando dos de los más importantes, y
proporcionando algunas referencias para su estudio.

1. Tanto los partidos políticos como los medios de comunicación conceden una notable
importancia a poder disponer de predicciones muy fiables de los resultados de unas elecciones al
poco tiempo de cerrar las urnas. Tales predicciones son posibles analizando, mediante métodos
estadísticos bayesianos objetivos, los resultados de un muestreo de los primeros resultados
escrutados en un conjunto de mesas electorales apropiadamente elegidas. La selección de
mesas utiliza un algoritmo, basado en el uso de la discrepancia intrínseca, que procesa resultados
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electorales anteriores. Las predicciones, en forma de una distribución de probabilidad sobre
las posibles configuraciones del Parlamento, son obtenidas mediante el análisis bayesiano de
modelos jerárquicos, implementados mediante métodos numéricos de Monte Carlo. El lector
interesado en los detalles matemáticos puede consultar Bernardo (1984, 1990, 1994a), Bernardo
y Girón (1992), y Bernardo (1997).

2. Una vez concluidas las elecciones, son frecuentes en los medios de comunicación las
polémicas sobre las transiciones de votos que han dado lugar al nuevo mapa electoral. Tales
polémicas son típicamente estériles, porque se trata de un problema estadístico con una solución
precisa. Aunque, obviamente, existen infinitas matrices de transición de voto compatibles con
los resultados globales de dos elecciones consecutivas, el hecho de disponer de los resultados
electorales para cada una de las mesas electorales del territorio permite estimar, con un error
prácticamente despreciable, la verdadera matriz de transición de voto que ha dado lugar a los
nuevos resultados. Bernardo (1994b) describe uno de los algorítmos que permiten determinarla.

REFERENCIAS
Bernardo, J. M. (1984). Monitoring the 1982 Spanish socialist victory: a Bayesian analysis. J. Amer. Statist.

Assoc. 79, 510–515.
Bernardo, J. M. (1990). Bayesian Election Forecasting. The New Zealand Statistician 25, 66–73.
Bernardo, J. M. (1994a). Optimal prediction with hierarchical models: Bayesian clustering. Aspects of Uncertainty:

a Tribute to D. V. Lindley (P. R. Freeman and A. F. M. Smith, eds.). Chichester: Wiley, 67–76.
Bernardo, J. M. (1994b). Bayesian estimation of political transition matrices. Statistical Decision Theory and

Related Topics V (S. S. Gupta and J. O. Berger, eds.). Berlin: Springer, 135–140.
Bernardo, J. M. (1997) Probing public opinion: the State of Valencia experience. Case Studies in Bayesian Statistics

3 (C. Gatsonis, J. S. Hodges, R. E. Kass, R. McCulloch and N. D. Singpurwalla, eds.). Berlin: Springer, 3–35,
(con discusión).

Bernardo, J. M. (1999). Ley d’Hondt y elecciones catalanas. El País, 2 de Noviembre de 1999. Madrid: Prisa.
Bernardo, J. M. (2004). Una alternativa a la Ley d’Hondt. El País, 2 de marzo de 2004. Madrid: Prisa.
Bernardo, J. M. (2005) Reference analysis. Handbook of Statistics 25, (D. Dipak, ed.) Amsterdam: North-

Holland(en prensa)
Bernardo, J. M. and Girón F. J. (1992). Robust sequential prediction from random samples: the election night

forecasting case. Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.).
Oxford: University Press, 651–660, (con discusión).

Bernardo, J. M. and Rueda, R. (2002). Bayesian hypothesis testing: A reference approach. Internat. Statist. Rev. 70,
351–372.

Kullback, S. (1959). Information Theory and Statistics. New York: Wiley. Second edition in 1968, New York:
Dover. Reprinted in 1978, Gloucester, MA: Peter Smith.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. Ann. Math. Statist. 22, 79–86.
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Tech. J. 27 379–423 and 623–656.

Reprinted in The Mathematical Theory of Communication (Shannon, C. E. and Weaver, W., 1949). Urbana,
IL.: Univ. Illinois Press.



Probabilidad y Estadística
en los Procesos Electorales

José-Miguel Bernardo
Universitat de València

<jose.m.bernardo@uv.es>
www.uv.es/˜bernardo

Universidad de La Laguna, 8 Marzo 2005
Universidad de Las Palmas de Gran Canaria, 9 Marzo 2005



2Contenido
1. El problema de la asignación de escaños

Elementos de una ley electoral
Características de una solución general

2. Divergencia entre distribuciones de probabilidad
Medidas de divergencia
Discrepancia intrínseca
Asociación intrínseca

3. Distribución óptima de escaños
El caso de dos escaños para dos partidos
El algoritmo de mínima discrepancia
Ejemplo: Lleida, autonómicas de 2003

4. Otros problemas electorales
Predicciones en la noche electoral
Selección de mesas electorales representativas
Matriz de transición de voto



31. El problema de la asignación de escaños
En las elecciones autonómicas catalanas de Noviembre de 2003
CiU obtuvo 46 escaños con el 30.93% de los votos.
PSC obtuvo 42 escaños con el 31.17% de los votos.
El artículo 68.3 de la Constitución española afirma que la
asignación de escaños en cada circunscripción se realizará
“ atendiendo a criterios de representación porporcional”

• Elementos de una ley electoral
Número total de escaños en el Parlamento
Posible distribución por cirscumscripciones (e.g., provincias)
Porcentaje umbral mínimo (e.g., 3%)
Algoritmo utilizado para la asignación de escaños en cada cir-
cunscripción (e.g., ley d’Hondt)
Este un problema matemático.La solución proporcionada por
la ley d’Hondt es incorrecta“atendiendo a criterios de represen-
tación porporcional”
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• Características de una solución general

Considerese una circunscripción a la que correspondent escaños.
Seank los partidos que han superado el umbral requerido, y
seanv = {v1, . . . , vk} los votos válidos obtenidos en ella por
cada uno de los partidos, lo que produce una distrubución del
votop = {p1, . . . , pk}, conpj = vj/(

∑k
j=1 vj), de forma que

0 < pj < 1,
∑k

j=1 pj = 1 y p is una distribución (discreta
finita) de probabilidad (ladistribución del voto).
Seae = {e1, . . . , ek}, una posible asignación de lost escaños:
los ej ’s son enteros no negativos tales que

∑k
j=1 ej = t, y sea

q = {q1, . . . , qk}, conqj = ej/t, (0 ≤ qj ≤ 1,
∑k

j=1 qj = 1)
la correspondientedistribución de los escaños.
El problema eselegiruna asignacióne de lost escaños de forma
quep y q sean distribuciones tanparecidascomo sea posible.
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2. Divergencia entre distribuciones de probabilidad

• Medidas de divergencia
Definición 1. La función real�{p, q} es unamedida de diver-
genciaentre dos distribuciones de un vector aleatoriox ∈ X con
funciones de probabilidad (o de densidad de probabilidad)p(x)
y q(x) si, y sólamente si,
(i) es simétrica:�{p, q } = �{q, p }
(ii) es no-negativa:�{p, q } ≥ 0

(iii) �{p, q } = 0 sii p(x) = q(x) casi por todas partes.

Ejemplos

�e{p, q } = (
∑k

j=1(pj − qj)2)
1/2, (Euclídea)

�h{p, q } = 1
2
∑k

j=1(
√

pj −
√

qj)2), (Hellinger)

�∞{p, q } = maxj |pj − qj|, (NormaL∞)
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• Discrepancia intrínseca

Definición 2. La discrepancia intrínsecaδ{p, q } entre dos
distribuciones de probabilidadp y q, es la función simétrica
y no-negativa

δ{p, q } = min { k{p | q }, k{q |p } },
k{q |p } =

∑
j∈J pj log

pj
qj

, (caso discreto)

k{q |p } =
∫
X p(x) log p(x)

p(x) dx, (caso continuo)

δ{p, q} es elmínimo valor medio del logaritmo del cociente de
probabilidadesde las dos distribuciones comparadas.
Puesto que para cualquier∀ε > 0 pequeño,log(1 + ε) ≈ ε
una pequeña discrepanciaε indica un mínimo cociente esperado
de probabilidades del orden de1+ ε, i.e., un error relativo medio
de al menos100ε%.
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Ejemplo 1. Aproximación Poisson a una distribución Binomial.
δ{Bi(· |n, θ), Pn(· |nθ)} = δ{n, θ}

=
n∑

r=0
Bi(r |n, θ) log

Bi(r |n, θ)
Pn(r |nθ)

,

0.1 0.2 0.3 0.4 0.5
Θ

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
∆ �Bi, Po � n, Θ �

n�1

n�3
n�5
n��

1
2[−θ − log(1 − θ)]
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• Asociación intrínseca

Definición 3. La asociación intrínsecaαxy = α{p(x,y)}
entre dos vectores aleatoriosx, y con función de probabilidad
(densidad de probabilidad) conjuntap(x,y) es la discrepancia
intrínsecaαxy = δ{pxy, pxpy} entre su distribución conjunta
p(x,y) y el productop(x)p(y) de sus distribuciones marginales.

Ejemplo 2. Medida de asociación en una tabla de contingencia.
SeaP = {πij = Pr[xi, yj]}, la matriz de probabilidades de
una tabla de contingencia de tamañon × m, y seanα y β sus
distribuciones marginales,α = {αi = Pr[xi] =

∑m
j=1 πij},

y β = {βj = Pr[yj] =
∑n

i=1 πij}. La asociación intrínseca
entre las variables aleatoriasx ey que definen la tabla es
δ{P} = δ{{πij}, {αiβj}} = min {k{P}, k0{P}}, con
k{P} =

∑n
i=1

∑m
j=1 πij log[πij/(αiβj)], y

k0{P} =
∑n

i=1
∑m

j=1 αiβj log[(αiβj)/πij].
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3. Distribución óptima de escaños

Dada una circunscripción cont escaños a repartir entrek partidos
con distrubución del votop = {p1, . . . , pk}, se trataelegiruna
asignacióne de lost escaños de forma que las distribuciones de
votos y de escaños sean tanparecidascomo sea posible.
La distribución optima de escañose∗ se define como aquella
asignaciónposiblee = {e1, . . . , ek} (ej ’s enteros no negativos
que sumant) que minimiza la discrepancia�{p, q} entre la
distribución del votop = {p1, . . . , pk} y la distribución de los
escañosq (conqj = ej/t).

La solución óptimae∗ puede depender de la medida� de discre-
pancia que se utilice, especialmente si el número de escaños a
distribuir t es muy pequeño.
En las elecciones generales españolas (cont ≥ 3), la solución
óptima es frecuentemente independiente de la medida de discre-
pancia elegida, especialmente en las provincias muy pobladas.
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• El caso de dos escaños para dos partidos

Cont = 2, y distribucion del votop = {p, 1 − p}, p ≥ 1/2.
el partido mayoritario recibe los dos escaños sii
�{{p, 1 − p}, {1, 0}} ≤ �{{p, 1 − p}, {1/2, 1/2}}.
El punto de corte es la soluciónp0 de la ecuación
�{{p0, 1 − p0}, {1, 0}} = �{{p0, 1 − p0}, {1/2, 1/2}}

d’Hondt Intrínseca Euclídea HellingerL∞
p0 2/3 0.811 3/4 0.853 3/4

La ley d’Hondt favorece injustificadamente al partido mayori-
tario, otorgándole los dos escaños a paertir de los 2/3 de los
votos, cuando todas las medidas de divergenmcia exigen al menos
los 3/4 de los votos.
La discrepancia intrínseca, con una base axiomática, requiere al
menos el 81.1% de los votos para asignar los dos escaños.
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• El algoritmo de mínima discrepancia

La solución ideal es la que distribuiría los escaños de forma
exactamente proporcional a los votos obtenidos; en general, no
es soluciónposible.
La soluciónóptima debe pertenecer alentorno enterode la
solución ideal, constituido por todas las combinaciones de sus
aproximaciones enteras no-negativas, por defecto y por exceso,
cuya suma sea igual al númerot de escaños a repartir.
Algoritmo demínima discrepancia: (solución euclídea)
(i) determinar para cada partido, las diferencias absolutas entre
la solución ideal y sus dos aproximaciones enteras,
(ii) escoger sucesivamente los escaños atribuidos ak−1 partidos
por orden creciente de esas diferencias,
(iii )determinar por diferencia los escaños que correspondiente
al partido restante.
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• Ejemplo: Lleida, autonómicas de 2003

15 escaños PSC CiU ERC PP ICV Total
Votos 45214 83636 40131 19446 8750197177

%votos 22.93 42.42 20.35 9.96 4.44 100.00
Ideal 3.44 6.36 3.05 1.48 0.67 15

Lím inf 3 6 3 1 0 13
Lím sup 4 7 4 2 1 18
Dif inf 0.44 0.36 0.05 0.48 0.67
Dif sup 0.56 0.64 0.95 0.52 0.33

Óptima 3 6 3 2 1 15
% escaños 20.00 40.00 20.00 13.33 6.67 100.00
d’Hondt 4 7 3 1 0 15

% escaños 26.67 46.67 20.00 6.67 0.00 100.00

(i) ERC→ 3, (ii) ICV→ 1, (iii) CiU→ 6, (iv) PSC→ 3,

(v) PP→ 2, (15 − 3 − 1 − 6 − 3 = 2)
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En este caso había 24 soluciones mejores que d’Hondt:

0 0.5 1 1.5

�3, 6, 3, 2, 1��4, 6, 3, 1, 1��3, 7, 3, 1, 1��3, 6, 4, 1, 1��4, 5, 3, 2, 1��4, 6, 2, 2, 1��3, 7, 2, 2, 1��4, 7, 2, 1, 1��3, 5, 4, 2, 1��4, 5, 4, 1, 1��2, 7, 3, 2, 1��3, 8, 2, 1, 1��5, 5, 3, 1, 1��2, 6, 4, 2, 1��2, 7, 4, 1, 1��5, 6, 2, 1, 1��2, 8, 3, 1, 1��3, 5, 3, 3, 1��3, 6, 3, 1, 2��4, 6, 3, 2, 0��3, 5, 5, 1, 1��3, 7, 3, 2, 0��3, 6, 2, 3, 1��5, 5, 2, 2, 1��4, 7, 3, 1, 0��4, 4, 4, 2, 1��3, 5, 3, 2, 2��2, 8, 2, 2, 1��4, 5, 3, 1, 2��3, 6, 4, 2, 0�

Optima

δ{óptima, ideal}
δ{d’Hondt, ideal} = 0.217

d’Hondt
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Divergencias con respecto a la solución ideal:

Solución PSC CiU ERC PP ICV Hell Intr Eucl L∞
Ideal 3.44 6.36 3.05 1.48 0.67 0 0 0 0

Óptima 3 6 3 2 1 0.003 0.012 0.056 0.52
d’Hondt 4 7 3 1 0 0.025 0.056 0.079 0.67

La solución{3, 6, 3, 2, 1} es óptima con respecto a las cuatro
medidas de divergencia y, en todos los casos, apreciablemente
mejor que la solución d’Hondt.La solución propuesta es, bajo
cualquier criterio, mucho más cercana al ideal constitucional de
proporcionalidad.
En marcado contraste con la ley d’Hondt,el algoritmo de mínima
discrepancia es muy sencillo. De hecho, es fácilmente aplicable
por el ciudadano medio, y le permite apreciar que se trata una
buena aproximación a la solución ideal.
La Ley d’Hondt debería desaparecer de nuestras leyes electorales.
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4. Otros problemas electorales

• Predicciones en la noche electoral
Predicciones precisas sobre la composición del Parlamento poco
después de cerrar las urnas analizando, mediante métodos esta-
dísticosbayesianosobjetivos, los primeros resultados escrutados
en un conjunto de mesas electorales apropiadamente elegidas.

• Selección de mesas electorales representativas
El conjunto de mesas representativas minimiza sudiscrepancia
intrínseca mediacon el resultado electoral global en una sucesión
de elecciones anteriores.

• Matriz de transición de voto
Aunque existen infinitas matrices de transición de voto compati-
bles con los resultadosglobalesde dos elecciones consecutivas,
los resultados electorales parciales permitenestimar, con un error
despreciable, la matriz de transición de voto que ha dado lugar a
los nuevos resultados.
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SUMMARY

On Election Night, returns from polling stations occur in a highly non-random manner, thus posing
special difÆcultiesin forecasting the Ænalresult. Using a data base which contains the results of past
elections for all polling stations, a robust hierarchical multivariate regression model is set up which
uses the available returns as a training sample and the outcome of the campaign surveys as a prior.
This model produces accurate predictions of the Ænalresults, even with only a fraction of the returns,
and it is extremely robust against data transmission errors.

Keywords: HIERARCHICAL BAYESIAN REGRESSION; PREDICTIVE POSTERIOR DISTRIBUTIONS;

ROBUST BAYESIAN METHODS.

1. THE PROBLEM

Consider a situation where, on election night, one is requested to produce a sequence of
forecasts of the Ænalresult, based on incoming returns. Unfortunately, one cannot treat the
available results at a given time as a random sample from all polling stations; indeed, returns
from small rural communities typically come in early, with a vote distribution which is far
removed from the overall vote distribution.

Naturally, one expects a certain geographical consistency among elections in the sense
that areas with, say, a proportionally high socialist vote in the last election will still have
a proportionally high socialist vote in the present election. Since the results of the past
election are available for each polling station, each incoming result may be compared with
the corresponding result in the past election in order to learn about the direction and magnitude
of the swing for each party. Combining the results already known with a prediction of those
yet to come, based on an estimation of the swings, one may hope to produce accurate forecasts
of the Ænalresults.

Since the whole process is done in real time, with very limited checking possibilities,
it is of paramount importance that the forecast procedure (i) should deal appropriately with
missing data, since reports from some polling stations may be very delayed, and (ii) should
be fairly robust against the inØuenceof potentially misleading data, such as clerical mistakes
in the actual typing of the incoming data, or in the identiÆcationof the corresponding polling
station.

* This paper has been prepared with partial Ænancialhelp from project number PB87-0607-C02-01/02 of
the Programa Sectorial de Promoción General del Conocimiento granted by the Ministerio de Educación y
Ciencia, Spain. Professor José M. Bernardo is on leave of absence from the Departamento de Estadı́stica e
I.O., Universidad de Valencia, Spain.
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In this paper, we offer a possible answer to the problem described. Section 2 describes
a solution in terms of a hierarchical linear model with heavy tailed error distributions. In
Section 3, we develop the required theory as an extension of the normal hierarchical model;
in Section 4, this theory is applied to the proposed model. Section 5 provides an example
of the behaviour of the solution, using data from the last (1989) Spanish general election,
where intentional ™errors” have been planted in order to test the robustness of the procedure.
Finally, Section 6 includes additional discussion and identiÆesareas for future research.

2. THE MODEL

In the Spanish electoral system, a certain number of parliamentary seats are assigned to
each province, roughly proportional to its population, and those seats are allocated to the
competing parties using a corrected proportional system known as the Jefferson-d’Hondt
algorithm (see e.g., Bernardo, 1984, for details). Moreover, because of important regional
differences deeply rooted in history, electoral data in a given region are only mildly relevant
to a different region. Thus, a sensible strategy for the analysis of Spanish electoral data is
to proceed province by province, leaving for a Ænalstep the combination of the different
provincial predictions into a Ænaloverall forecast.

Let rijkl be the proportion of the valid vote which was obtained in the last election by
party i in polling station j, of electoral district k, in county l of a given province. Here,
i = 1, . . . , p, where p is the number of studied parties, j = 1, . . . , nkl, where nkl is the
number of polling stations in district k of county l; k = 1, . . . , nl, where nl is the number
of electoral districts in county l, and l = 1, . . . ,m, where m is the number of counties
(municipios) in the province. Thus, we will be dealing with a total of

N =
m∑
l=1

nl∑
k=1

nkl

polling stations in the province, distributed over m counties. For convenience, let r gener-
ically denote the p-dimensional vector which contains the past results of a given polling
station.

Similarly, let yijkl be the proportion of the valid vote which party i obtains in the present
election in polling station j, of electoral district k, in county l of the province under study.
As before, let y generically denote the p-dimensional vector which contains the incoming
results of a given polling station.

At any given moment, only some of the y’s, say y1, . . . ,yn, 0 ≤ n ≤ N , will be known.
An estimate of the Ænaldistribution of the vote z = {z1, . . . , zp} will be given by

ẑ =
n∑

i=1

ωiyi +
N∑

i=n+1

ωiŷi,
N∑
i=1

ωi = 1,

where the ω’s are the relative weights of the polling stations, in terms of number of voters,
and the ŷj’s are estimates of the N −n unobserved y’s, to be obtained from the n observed
results.

Within each electoral district, one may expect similar political behaviour, so that it seems
plausible to assume that the observed swings should be exchangeable, i.e.,

yjkl − rjkl = αkl + ejkl, j = 1, . . . , nkl;
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where the α’s describe the average swings within each electoral district and where, for
robustness, the e’s should be assumed to be from a heavy tailed error distribution.

Moreover, electoral districts may safely be assumed to be exchangeable within each
county, so that

αkl = βl + ukl, k = 1, . . . , nl,

where the β’s describe the average swings within each county and where, again for robustness,
the u’s should be assumed to be from a heavy tailed error distribution.

Finally, county swings may be assumed to be exchangeable within the province, and thus

βl = γ + vl, l = 1, . . . ,m;

where γ describes the average expected swing within the province, which will be assumed
to be known from the last campaign survey. Again, for robustness, the distribution of the
v’s should have heavy tails.

In Section 4, we shall make the speciÆccalculations assuming that e, u and v have
p-variate Cauchy distributions, centered at the origin and with known precision matrices P α,
P β and P γ which, in practice, are estimated from the swings recorded between the last two
elections held. The model may however be easily extended to the far more general class of
elliptical symmetric distributions.

From these assumptions, one may obtain the joint posterior distribution of the average
swings of the electoral districts, i.e.,

p(α1, . . . ,αnm |y1, . . . ,yn, r1, . . . , rN )

and thus, one may compute the posterior predictive distribution

p(z |y1, . . . ,yn, r1, . . . , rN )

of the Ænaldistribution of the vote,

z =
n∑

i=1

ωiyi +
N∑

i=n+1

ωi(αi + ri),
N∑
i=1

ωi = 1,

where, for each i, αi is the swing which corresponds to the electoral district to which the
polling station i belongs.

A Ænaltransformation, using the d’Hondt algorithm, s = Hondt[z], which associates a
partition

s = {s1, . . . , sp}, s1 + · · · + sp = S

among the p parties of the S seats allocated to the province as a function of the vote
distribution z, may then be used to obtain a predictive posterior distribution

p(s |y1, . . . ,yn, r1, . . . , rN ) (2.1)

over the possible distributions among the p parties of the S disputed seats.
The predictive distributions thus obtained from each province may Ænallybe combined

to obtain the desired Ænalresult, i.e., a predictive distribution over the possible Parliamentary
seat conÆgurations.
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3. ROBUST HIERARCHICAL LINEAR MODELS

One of the most useful models in Bayesian practice is the Normal Hierarchical Linear Model
(NHLM) developed by Lindley and Smith (1972) and Smith (1973). In their model the
assumption of normality was essential for the derivation of the exact posterior distributions
of the parameters of every hierarchy and the corresponding predictive likelihoods. Within
this setup, all the distributions involved were normal and, accordingly, the computation of all
parameters in these distributions was straightforward. However, the usefulness of the model
was limited, to a great extent, by the assumption of independent normal errors in every stage
of the hierarchy. In this section,
(i) We Ærstgeneralize the NHLM model to a multivariate setting, to be denoted NMHLM,

in a form which may be extended to more general error structures.
(ii) We then generalize that model to a Multivariate Hierarchical Linear Model (MHLM)

with rather general error structures, in a form which retains the main features of the
NMHLN.

(iii) Next, we show that the MHLM is weakly robust, in a sense to be made precise later,
which, loosely speaking, means that the usual NMHLM estimates of the parameters in
every stage are distribution independent for a large class of error structures.

(iv) We then develop the theory, and give exact distributional results, for error structures
which may be written as scale mixtures of matrix-normal distributions.

(v) Finally, we give more precise results for the subclass of Student’s matrix-variate t dis-
tributions.
These results generalize the standard multivariate linear model and also extend some

previous work by Zellner (1976) for the usual linear regression model.
A k-stage general multivariate normal hierarchical linear model MNHLM, which gener-

alizes the usual univariate model, is given by the following equations, each representing the
conditional distribution of one hyperparameter given the next in the hierarchy. It is supposed
that the last stage hyperparameter, Θk, is known.

Y |Θ1 ∼ N(A1Θ1,C1 ⊗ Σ)
Θi |Θi+1 ∼ N(Ai+1Θi+1,Ci+1 ⊗ Σ); i = 1, . . . k − 1.

(3.1)

In these equations Y is an n× p matrix which represents the observed data, the Θi’s are
the i-th stage hyperparameter matrices of dimensions ni×p and the Ai’s are design matrices
of dimensions ni−1 × ni (assuming that n0 = n). The Ci’s are positive deÆnitematrices of
dimensions ni−1 × ni−1 and, Ænally, Σ is a p × p positive deÆnitematrix. The matrix of
means for the conditional matrix-normal distribution at stage i is AiΘi and the corresponding
covariance matrix is Ci ⊗ Σ, where ⊗ denotes the Kronecker product of matrices.

From this model, using standard properties of the matrix-normal distributions, one may
derive the marginal distribution of the hyperparameter Θi, which is given by

Θi ∼ N(BikΘk,P i ⊗ Σ), i = 1, . . . k − 1,

where
Bij = Ai+1 · · ·Aj, i < j;

P i = Ci+1 +
k−1∑

j=i+1

BijCj+1B
′
ij.

The predictive distribution of Y given Θi is

Y |Θi ∼ N(A∗
iΘi,Qi ⊗ Σ),
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where
A∗

i = A0A1 · · ·Ai with A0 = I;

Qi =
i−1∑
j=0

A∗
jCj+1A

∗
i
′.

From this, the posterior distribution of Θi given the data Y , {Ai} and {Ci} is

Θi |Y ∼ N(Didi,Di ⊗ Σ),

with
D−1

i = A∗
i
′Q−1

i A∗
i + P−1

i ;

di = A∗
i
′Q−1

i Y + P−1
i BikΘk.

In order to prove the basic result of this section, the MNHLM (3.1) can be more usefully
written in the form

Y = A1Θ1 + U 1

Θi = Ai+1Θi+1 + U i+1; i = 1, . . . k − 1,
(3.2)

where the matrix of error terms U i are assumed independent N(O,Ci⊗Σ) or, equivalently,
that the matrix U = (U 1, . . . ,Uk) is distributed as


 U 1

...
Uk


 ∼ N





 O

...
O


 ;


 C1 . . . O

...
. . .

...
O . . . Ck


 ⊗ Σ


 . (3.3)

Predictive distributions for future data Z following the linear model

Z = W 1Θ1 + UW, UW ∼ N(O,CW ⊗ Σ), (3.4)

where Z is a m × p matrix and UW is independent of the matrix U , can now be easily
derived. Indeed, from properties of the matrix-normal distributions it follows that

Z |Y ∼ N(WD1d1, (WDiW
′ + CW ) ⊗ Σ). (3.5)

Suppose now that the error vector U is distributed according to the scale mixture

U ∼
∫

N(0,C ⊗ Λ) dF (Λ), (3.6)

where C represents the matrix whose diagonal elements are the matrices Ci and the remaining
elements are zero matrices of the appropriate dimensions, i.e., the diagonal covariance matrix
of equation (3.3), and F (Λ) is any matrix-distribution with support in the class of positive
deÆnitep × p matrices. Clearly, the usual MNHLM (3.2) can be viewed as choosing a
degenerate distribution at Λ = Σ for F , while, for example, the hypothesis of U being
distributed as a matrix-variate Student t distribution is equivalent to F being distributed as
an inverted-Wishart distribution with appropriate parameters.

With this notation we can state the following theorem
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Theorem 3.1 . If the random matrix U is distributed according to (3.6), then

i) the marginal distribution of Θi is

Θi ∼
∫

N(BikΘk,P i ⊗ Λ) dF (Λ) i = 1, . . . k − 1;

ii) the predictive distribution of Y given Θi is

Y |Θi ∼
∫

N(A∗
iΘi,Qi ⊗ Λ) dF (Λ |Θi), i = 1, . . . k − 1;

where the posterior distribution of Λ given Θi, F (Λ |Θi), is given by

dF (Λ |Θi) ∝ |Λ|−ni/2 exp
{
− 1

2
trΛ−1(Θi − BikΘk)′P−1

i (Θi − BikΘk)
}
dF (Λ);

iii) the posterior distribution of Θi given the data Y is

Θi |Y ∼
∫

N(Didi,Di ⊗ Λ) dF (Λ |Y ), i = 1, . . . k − 1;

where the posterior distribution of Λ given Y , F (Λ |Y ), is given by

dF (Λ |Y ) ∝ |Λ|−n/2 exp
{
− 1

2
trΛ−1(Y − A∗

kΘk)′Q−1
k (Y − A∗

kΘk)
}
dF (Λ).

Proof. The main idea is, simply, to work conditionally on the scale hyperparameter Λ
and, then, apply the results of the MNHLM stated above.

Conditionally on Λ, the error matrices U i are independent and normally distributed as
U i ∼ N(O,Ci ⊗ Λ); therefore, with the same notation as above, we have

Θi |Λ ∼ N(BikΘk,P i ⊗ Λ),
Y |Θi,Λ ∼ N(A∗

iΘi,Qi ⊗ Λ),
and

Θi |Y ,Λ ∼ N(Didi,Di ⊗ Λ); i = 1, . . . , k.

Now, by Bayes theorem,

dF (Λ |Θi)
dF (Λ)

∝ g(Θi |Λ),
dF (Λ |Y )
dF (Λ)

∝ h(Y |Λ),

where g(Θi |Λ) and h(Y |Λ) represent the conditional densities of Θi given Λ and Y given
Λ, which are N(BikΘk,P i ⊗ Λ) and N(A∗

kΘk,Qk ⊗ Λ), respectively.
From this, by integrating out the scale hyperparameter Λ with respect to the corresponding

distribution, we obtain the stated results. �

The theorem shows that all distributions involved are also scale mixtures of matrix-
normal distributions. In particular, the most interesting distributions are the posteriors of the
hyperparameters at every stage given the data, i.e., Θi |Y . These distributions turn out to
be just a scale mixture of matrix-normals. This implies that the usual modal estimator of the
Θi’s, i.e., the mode of the posterior distribution, which is also the matrix of means for those
F ’s with ÆniteÆrstmoments, is Didi, whatever the prior distribution F of Λ. In this sense,
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these estimates are robust, that is, they do not depend on F . However, other parameters and
characteristics of these distributions such as the H.P.D. regions for the hyperparameters in
the hierarchy depend on the distribution F of Λ.

Note that from this theorem and formula (3.5) we can also compute the predictive dis-
tribution of future data Z generated by the model (3.4), which is also a scale mixture.

Z |Y ∼
∫

N(WD1d1, (WD1W
′ + CW ) ⊗ Λ) dF (Λ |Y ). (3.7)

More precise results can be derived for the special case in which the U matrix is dis-
tributed as a matrix-variate Student t. For the deÆnitionof the matrix-variate Student t, we
follow the same notation as in Box and Tiao (1973, Chapter 8).

Theorem 3.2. If U ∼ t(O,C,S; ν) with dispersion matrix C ⊗ S and ν degrees of
freedom, then

(i) the posterior distribution of Θi given Y is

Θi |Y ∼ tnip(Didi,Di, (S + T ); ν + n),

where the matrix T = (Y − A∗
kΘk)′Q−1

k (Y − A∗
kΘk);

(ii) the posterior distribution of Λ is an inverted-Wishart,

Λ |Y ∼ InW (S + T , ν + n).

(iii) the predictive distribution of Z = W 1Θ1 + UW is

Z |Y ∼ tmp(WD1d1, (WD1W
′ + CW ),S + T ; ν + n).

Proof. The Ærstresult is a simple consequence of the fact that a matrix-variate Stu-
dent t distribution is a scale mixture of matrix-variate normals. More precisely, if U ∼
t(O,C,S; ν), then U is the mixture given by (3.6), with F ∼ InW (S, ν).

From this representation and Theorem 3.1. iii), we obtain that the inverted-Wishart
family for Λ is a conjugate one. In fact,

dF (Λ |Y )
dΛ

∝ |Λ|−n/2 exp
{
− 1

2
trΛ−1T

}
· |Λ|−(ν/2+p) exp

{
− 1

2
trΛ−1S

}

∝ |Λ|−((ν+n)/2+p) exp
{
− 1

2
trΛ−1(T + S)

}
;

and (ii) follows. Finally, substitution of (ii) into (3.7) establishes (iii). �

4. PREDICTIVE POSTERIOR DISTRIBUTIONS OF INTEREST

In this section we specialize the results just established to the particular case of the model
described in Section 2. In order to derive the predictive distribution of the random quantity
z let us introduce some useful notation. Let Y denote the full N × p matrix whose rows are
the vectors yi of observed and potentially observed results, as deÆnedin Section 2. Partition
this matrix into the already observed part y1, . . . ,yn, i.e., the n × p matrix Y 1 and the
unobserved part, the (N − n) × p matrix Y 2 formed with the remaining N − n rows of Y .
Let R denote the N ×p matrix whose rows are the vectors ri of past results and R1, R2 the
corresponding partitions. By X we denote the matrix of swings, i.e., X = Y −R with X1,
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X2 representing the corresponding partitions. Finally, let ω be the row vector of weights
(ω1, . . . , ωN ) and ω1 and ω2 the corresponding partition.

With this notation the model presented in Section 2, which in a sense is similar to a
random effect model with missing data, can be written as a hierarchical model in three stages
as follows

X1 = A1Θ1 + U 1,

Θ1 = A2Θ2 + U 2,

Θ2 = A3Θ3 + U 3;
(4.1)

where X1 is a n× p matrix of known data, whose rows are of the form yjkl−rjkl for those
indexes corresponding to the observed data y1, . . . ,yn, Θ1 is an N × p matrix whose rows
are the p-dimensional vectors αkl, Θ2 is an m× p matrix whose rows are the p-dimensional
vectors βl and, Ænally, Θ3 is the p-dimensional row vector γ. The matrices Ai for i = 1, 2, 3
have special forms; in fact A1 is an n×N matrix whose rows are N -dimensional unit vectors,
with the one in the place that matches the polling station in district k of county l from which
the data arose. A2 is an N × m matrix whose rows are m-dimensional units vectors, as
follows: the Ærstn1 rows are equal to the unit vector e1, the next n2 rows are equal to the
unit vector e2, and so on, so that the last nm rows are equal to the unit vector em. Finally,
the m× 1 matrix A3 is the m-dimensional column vector (1, . . . , 1).

The main objective is to obtain the predictive distribution of z given the observed data
y1, . . . ,yn and the results from the last election r1, . . . , rN . From this, using the d’Hondt
algorithm, it is easy to obtain the predictive distribution of the seats among the p parties.

The Ærststep is to derive the posterior of the α’s or, equivalently, the posterior of Θ1
given Y or, equivalently, X1.

From Theorem 3.2, for k = 3 we have

D−1
1 = A′

1C
−1
1 A1 + (C2 + A2C3A

′
2)

−1

d1 = A′
1C

−1
1 X1 + (C2 + A2C3A

′
2)

−1A2A3γ.

The computation of D−1 involves the inversion of an N × N matrix. Using standard
matrix identities, D−1 can also be written in the form

D−1
1 = A′

1C
−1
1 A1 + C−1

2 − C−1
2 A2(A′

2C
−1
2 A2 + C−1

3 )−1A′
2C

−1
2

which may be computationally more efÆcientwhen the matrix C2 is diagonal and m, as in
our case, is much smaller than N .

Further simpliÆcationin the formulae and subsequent computations result from the hy-
pothesis of exchangeability of the swings formulated in Section 2. This implies that the
matrices Ci are of the form kiI , where ki are positive constants and I are identity matrices
of the appropiate dimensions.

Now, the predictive model for future observations is

X2 = Y 2 − R2 = WΘ1 + UW, UW ∼ N(O,CW ⊗ S);

where W is the (N − n)×N matrix whose rows are N -dimensional unit vectors that have
exactly the same meaning as those of matrix A1.

Then, using the results of the preceding section, the predictive ditribution of Y 2 given
the data Y 1 and R is

Y 2 ∼ t(N−n)p(R2 + WD1d1,WD1W
′ + CW,S + (Y 1 − 1γ)′Q−1

3 (Y 1 − 1γ); ν + n)
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due to the fact that the matrix A∗
3 = 1, where 1 is an n column vector with all entries equal

to 1.
From this distribution, using properties of the matrix-variate Student t, the posterior of

z which is a linear combination of Y 2 is

z |Y 1,R ∼ t1p(ω1Y 1 + ω2R2 + ω2WD1d1,

ω2(WD1W
′ + CW )ω′

2,S + (Y 1 − 1γ)′Q−1
3 (Y 1 − 1γ); ν + n).

This matrix-variate t is, in fact, a multivariate Student t distribution, so that, in the
notation of Section 2,

p(z |y1, . . . ,yn, r1, . . . , rN ) = Stp(z |mz,Sz, ν + n) (4.2)

i.e., a p-dimensional Student t, with mean

mz = ω1Y 1 + ω2R2 + ω2WD1d1,

dispersion matrix,

ω2(WD1W
′ + CW )ω′

2
ν + n

(S + (Y 1 − 1γ)′Q−1
3 (Y 1 − 1γ);

and ν + n degrees of freedom.

5. A CASE STUDY: THE 1989 SPANISH GENERAL ELECTION

The methodology described in Section 4 has been tested using the results, for the Province
of Valencia, of the last two elections which have been held in Spain, namely the European
Parliamentary Elections of June 1989, and the Spanish General Elections of October 1989.

The Province of Valencia has N = 1566 polling stations, distributed among m = 264
counties. The number nl of electoral districts whithin each county varies between 1 and 19,
and the number nkl of polling stations within each electoral district varies between 1 and 57.

The outcome of the October General Election for the p = 5 parties with parliamentary
representation in Valencia has been predicted, pretending that their returns are partially un-
known, and using the June European Elections as the database. The parties considered were
PSOE (socialist), PP (conservative), CDS (liberal), UV (conservative regionalist) and IU
(communist).

5% 20% 90% Final

Mean Dev. Error Mean Dev. Error Mean Dev. Error

PSOE 40.08 0.46 ±0.43 40.39 0.40 ±0.13 40.50 0.16 ±0.02 40.52
PP 23.72 0.49 ±0.40 24.19 0.45 0.07 24.19 0.18 0.07 24.12

CDS 6.28 0.36 ±0.20 6.33 0.33 ±0.15 6.49 0.13 0.01 6.49
UV 11.88 0.50 0.44 11.62 0.46 0.17 11.42 0.17 ±0.02 11.45
IU 10.05 0.40 0.03 9.93 0.37 ±0.09 10.01 0.14 ±0.02 10.02

10. Table 1.

Evolution of the percentages of valid votes.
For several proportions of known returns (5%, 20% and 90% of the total number of votes),

Table 1 shows the means and standard deviations of the marginal posterior distributions of
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the percentages of valid votes obtained by each of the Æveparties. The absolute error of the
means with respect to the Ænalresult actually obtained are also quoted.

It is fairly impressive to observe that, with only 5% of the returns, the absolute errors of
the posterior modes are all smaller than 0.5%, and that those errors drop to about 0.15% with
just 20% of the returns, a proportion of the vote which is usually available about two hours
after the polling stations close. With 90% of the returns, we are able to quote a ™practically
Ænal”result without having to wait for the small proportion of returns which typically get
delayed for one reason or another; indeed, the errors all drop below 0.1% and, on election
night, vote percentages are never quoted to more than one decimal place.

In Table 2, we show the evolution, as the proportion of the returns grows, of the posterior
probability distribution over the possible allocation of the S=16 disputed seats.

PSOE PP CDS UV IU 5% 20% 90% Final

8 4 1 2 1 0.476 0.665 0.799 1.000
7 4 1 2 2 0.521 0.324 0.201 0.000
7 5 1 2 1 0.003 0.010 0.000 0.000

10. Table 2.

Evolution of the probability distribution over seat partitions.
Interestingly, two seat distributions, namely {8, 4, 1, 2, 1} and {7, 4, 1, 2, 2}, have a

relatively large probability from the very beginning. This gives advance warning of the fact
that, because of the intrinsically discontinuous features of the d’Hondt algorithm, the last seat
is going to be allocated by a few number of votes, to either the socialists or the communists.
In fact, the socialists won that seat, but, had the communists obtained 1,667 more votes (they
obtained 118,567) they would have won that seat.

Tables 1 and 2 are the product of a very realistic simulation. The numbers appear to
be very stable even if the sampling mechanism in the simulation is heavily biased, as when
the returns are introduced by city size. The next Valencia State Elections will be held on
May 26th, 1991; that night, will be the première of this model in real time.

6. DISCUSSION

The multivariate normal model NMHLM developed in Section 3 is a natural extension of
the usual NHLM; indeed, this is just the particular case which obtains when p = 1 and
the matrix S is an scalar equal to 1. As deÆnedin (3.1), our multivariate model imposes
some restrictions on the structure of the global covariance matrix but, this is what makes
possible the derivation of simple formulae for the posterior distributions of the parameters and
for the predictive distributions of future observations, all of which are matrix-variate-normal.
Moreover, within this setting it is also possible, as we have demonstrated, to extend the model
to error structures generated by scale mixtures of matrix-variate-normals. Actually, this may
be futher extended to the class of elliptically symmetric distributions, which contains the
class of scale mixtures of matrix-variate-normals as a particular case; this will be reported
elsewhere. Without the restrictions we have imposed on the covariance structure, further
progress on the general model seems difÆcult.

One additional characteristic of this hierarchical model, that we have not developed in
this paper but merits careful attention, is the possibility of sequential updating of the hyper-
parameters, in a Kalman-like fashion, when the observational errors are assumed to be con-
ditionally independent given the scale matrix hyperparameter. The possibility of combining
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the Øexibilityof modelling the data according to a hierarchical model, with the computational
advantages of the sequential characteristics of the Kalman Ælterdeserves, we believe, some
attention and further research.

As shown in our motivating example, the use of sophisticated Bayesian modelling in
forecasting may provide qualitatively different answers, to the point of modifying the possible
uses of the forecast.
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APPENDIX

Tables 3 and 4 below describe, with the notation used in Tables 1 and 2, what actually
happened in the Province of Valencia on election night, May 26th, 1991, when S = 37 State
Parliament seats were being contested.

5% 20% 90% Final

Mean Dev. Error Mean Dev. Error Mean Dev. Error

PSOE 41.5 3.6 ±1.0 41.6 2.6 ±0.9 42.4 2.2 ±0.1 42.5
PP 23.5 3.1 0.0 23.4 2.8 ±0.1 23.5 1.9 0.0 23.5

CDS 4.4 1.4 1.9 4.8 0.5 2.3 2.9 0.5 0.4 2.5
UV 14.4 2.3 ±2.0 13.6 1.3 ±2.8 16.0 2.0 ±0.4 16.4
IU 9.2 2.0 0.9 9.4 2.2 1.1 8.6 1.9 0.3 8.3

10. Table 3.

Evolution of the percentages of valid votes.

PSOE PP CDS UV IU 5% 20% 90% Final

18 10 0 6 3 0.06 0.02 0.82 1.00
18 9 0 7 3 0.03 0.02 0.04 0.00
17 10 2 5 3 0.03 0.47 0.01 0.00
17 9 2 5 4 0.03 0.17 0.01 0.00
17 10 1 6 3 0.36 0.02 0.01 0.00
18 9 1 6 3 0.11 0.02 0.01 0.00

10. Table 4.

Evolution of the probability distribution over seat partitions.
It is easily appreciated by comparison that both the standard deviations of the marginal

posteriors, and the actual estimation errors, were far larger in real life than in the example.
A general explanation lies in the fact that state elections have a far larger local component
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than national elections, so that variances within strata were far larger, specially with the
regionalists (UV). Moreover, the liberals (CDS) performed very badly in this election (mo-
tivating the resignation from their leadership of former prime minister Adolfo Suarez); this
poor performance was very inhomogeneous, however, thus adding to the inØatedvariances.
Nevertheless, essentially accurate Ænalpredictions were made with 60% of the returns, and
this was done over two hours before any other forecaster was able to produce a decent
approximation to the Ænalresults.

DISCUSSION

L. R. PERICCHI (Universidad Simón Bolı́var, Venezuela)
This paper addresses a problem that has captured statisticians’ attention in the past. It

is one of these public problems where the case for sophisticated statistical techniques, and
moreover the case for the Bayesian approach, is put to the test: quick and accurate forecasts
are demanded.

The proposal described here has some characteristics in common with previous ap-
proaches and some novel improvements. In general this article raises issues of modelling
and robustness.

The problem is one on which there is substantial prior information from different sources,
like past elections, surveys, etc. Also, exchangeability relationships in a hierarchy are natural.
Furthermore, the objective is one of prediction in the form of a probability distribution of the
possible conÆgurationsof the parlament. Thus, not surprisingly, this paper, as previous arti-
cles on the same subject, Brown and Payne (1975, 1984) and Bernardo (1984), have obtained
shrinkage estimators, ™borrowing strength”, setting the problem as a Bayesian Hierarchical
Linear model. Bernardo and Girón in the present article get closer to the Brown and Payne
modelling than that of Bernardo (1984), since they resort to modelling directly the ™swings”
rather than modelling the log-odds of the multinomial probabilities. All this, coupled with
the great amount of prior information, offers the possibility of very accurate predictions from
the very begining of the exercise.

A limitation of the model, as has been pointed out by the authors, is the lack of sequential
updating. The incoming data is highly structured –there is certainly a bias of order of
declaration– producing a trend rather than a random ordering. This prompts the need for
sequential updating in a dynamic model that may be in place just before the election, as the
authors conÆrmedin their verbal reply to the discussion.

The second limitation, is in our opinion of even greater importance and that is the lack of
™strong” robustness (see below), protecting against unbounded inØuenceof wrong information
of counts and/or wrong classiÆcationof polling stations; i.e. gross errors or atypical data
should not inØuenceunduly the general prediction of the swigns. The usual hierarchical
normal model has been found extremely sensitive to gross errors, possibly producing large
shrinkages in the wrong direction.

At this point a short general discussion is in order. The term ‘Bayesian Robustness’
covers a wide Æeldwithin which it can have quite different meanings. The Ærstmeaning
begins with the recognition of the inevitability of imprecision of probability speciÆcations.
Even this Ærstapproach admits two different interpretations (that have similarities but also
important differences). One is the ™sensitivy analysis” interpretation (Berger, 1990), which
is widely known. The second is the upper and lower probability interpretation. The latter
is a more radical departure from precise analysis, which rejects the usual axiomatic founda-
tions and derives directly the lower probability from its own axioms for rational behaviour,
(Walley, 1990). The second meaning of robustness is closer to the Huber-Hampel notion of
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assuming models (likelihoods and/or priors) that avoid unbounded inØuenceof assumptions,
but still work with a single probability model. The present paper uses this second meaning
of robustness.

The authors address the need for robustness by replacing the normal errors throughout, by
scale mixtures of normal errors. Scale mixtures of normal errors as outlier prone distributions
have a long history in Bayesian analyses. They were, perhaps, Ærstproposed as a Bayesian
way of dealing with outliers by de Finetti (1961) and have been sucessfully used in static
and dynamic linear regression, West (1981, 1984).

Let us note in passing that the class of scale mixture of normals has been considered as
a class (in the Ærstmeaning of robustness mentioned above) by Moreno and Pericchi (1990).
They consider an ε-contaminated model but the base prior π0 is a scale mixture and the
mixing distribution is only assumed to belong to a class H , i.e.

Γε,π0(H,Q) =
{
π(θ) = (1 − ε)

∫
π0(θ|r)h(dr) + εq(θ), q ∈ Q, h ∈ H

}

Examples of different classes of mixing distributions considered are

H1 =
{
h(dr) :

∫ ri

0
h(dr) = hi, i = 1 . . . n

}

H2 =
{
h(dr) : h(r) unimodal at r0 and

∫ r0

0
h(dr) = h0

}

When π0 is normal and ε = 0 then Γ(H) is the class of scale mixtures of normal
distributions with mixing distributions in H . The authors report sensible posterior ranges for
probabilities of sets using H1 and H2.

Going back to the particular scale mixture of normals considered by Bernardo and Girón,
they Ærstconveniently write the usual Multivariate Normal Hierarchical model and by restrict-
ing to a common scale matrix (Σ in (3.3) or Λ in (3.6)), they are able to obtain an elegant
expression of the posterior distributions (Theorem 3.1.). Furthermore in Theorem 3.2, by
specializing to a particular combination of Student-t distributions, they are able to get closed
form results. This would be surprising, were it not for Zellner’s (1976) conjecture: ™similar
results (as those for regression) will be found with errors following a matrix Student-t”.
However, as with Zellner’s results the authors get ™weak” rather than ™strong” robustness,
in the sense that the posterior mean turns out to be linear in the observations (and there-
fore non-robust), although other characteristics of the distributions will be robust. However,
™strong” robustness is what is required, and some ad hoc ways to protect against outlying
data (like screening) may be required. Also, approximations on combination of models that
yield ™strong” robustness may be more useful than exact results. Having said that, we should
bear in mind that compromises due to time pressure on election night, may have to be made
given the insufÆcientdevelopment of the theory of scale mixtures of normals.

Finally, we remark that the elegant (even if too restricted) development of this paper
opens wide possibilities for modelling. We should strive for more theoretical insight in
the scale mixture of normals, to guide the assessment. For example O’Hagan’s ™Credence”
theory is still quite incomplete. Moreover, scale mixture of normals offers a much wider
choice than just the Student-t, that should be explored. So far Bernardo and Girón have
shown us encouraging simulations. Let us wish them well on the actual election night.
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A. P. DAWID (University College London, UK)
It seems worth emphasising that the ™robustness” considered in this paper refers to the

invariance of the results (formulae for means) in the face of varying Σ in (3.3) or (what is
equivalent) the distribution F of (3.6). This distribution can be thought of either as part of
the prior (Σ being a parameter) or, on using (3.6) in (3.2), as part of the model – although
note that, in this latter case, the important independence (Markov) properties of the system
(3.2) are lost. Relevant theory and formulae for both the general ™left-spherical” case and
the particular Student-t case may be found in Dawid (1977) – see also Dawid (1981, 1988).

At the presentation of this paper at the meeting, I understood the authors to suggest that
the methods also exhibit robustness in the more common sense of insensitivity to extreme
data values. One Bayesian approach to this involves modelling with heavy tailed prior and
error distributions, as in Dawid (1973), O’Hagan (1979, 1988) –in particular, Student-t
forms are often suitable. And indeed, as pointed out at the meeting, the model does allow
the possibility of obtaining such distributions for all relevant quantitities. In order to avoid
any ambiguity, therefore, it must be clearly realized that, even with this choice, this model
does not possess robustness against outliers. The Bayesian outlier-robustness theory does
not apply because, as mentioned above, after using (3.6) with F ∼ InW (S, ν) the (Ui)
are no longer independent. Independence is vital for the heavy-tails theory to work – zero
correlation is simply not an acceptable alternative. In fact, since the predictive means under
the model turn out to be linear in the data, it is obvious that the methods developed in this
paper can not be outlier-robust.

S. E. FIENBERG (York University, Canada)
As Bernardo and Girón are aware, others have used hierarchical Bayesian models for

election night predictions. As far as I am aware the earliest such prediction system was set
up in the United States.

In the 1960s a group of statisticians working for the NBC televion network developed
a computer-based statistical model for predicting the winner in the U.S. national elections
for President (by state) and for individual state elections for Senator anf Governor. In a
presidential-election year, close to 100 predictions are made, otherwise only half that number
are required. The statistical model used can be viewed as a primitive version of a Bayesian
hierarchical linear model (with a fair bit of what I. J. Good would call ad hockery) and it
predates the work of Lindley and Smith by several years. Primary contributors to the election
prediction model development included D. Brillinger, J. Tukey, and D. Wallace. Since the
actual model is still proprietary, the following description is somewhat general, and is based
on my memory of the system as it operated in the 1970s.

In the 1960s an organization called the News Election Service (NES) was formed through
a cooperative effort of the three national television networks and two wire services. NES
collects data by precint, from individual precincts and the 3000 county reporting centers and
forwards them to the networks and wire services by county (for more details, see Link, 1989).
All networks get the same data at the same time from NES.

For each state, at any point in time, there are data from four sources: (i) a prior estimate of
the outcome, (ii) key precints (chosen by their previous correlation with the actual outcome),
(iii) county data, (iv) whole-state data (which are the numbers the networks ™oÆcially”report).
The NBC model works with estimates of the swings of the differences between % Republican
vote and % Democratic vote (a more elaborate version is used for multiple candidates) relative
to the difference from some previous election. In addition there is a related model for turnout
ratios.

The four sources of data are combined to produce an estimate of [%R − %D]/2 with
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an estimated mean square error based on the sampling variance, historical information, and
various bias parameters which can be varied depending on circumstances. A somewhat more
elaborate structure is used to accomodate elections involving three or more major candidates.
For each race the NBC model requires special settings for 78 different sets of parameters,
for biases and variances, turnout adjustment factors, stratiÆcationof the state, etc. The
model usually involves a geographic stratiÆcationof the state into four ™substates” based on
urban/suburban/rural structure and produces estimates by strata, which are then weighted by
turnout to produce statewide estimates.

Even with such a computer-based model about a dozen statisticians are required to
monitor the Øowof data and the model performance. Special attention to the robustness
of predictions relative to different historical bases for swings is an important factor, as is
collateral information about where the early data are from (e.g., the city of Chicago vs. the
Chicago suburbs vs. downstate Illinois).

Getting accurate early predictions is the name of the game in election night forecasting
because NBC competes with the other networks on making forecasts. Borrowing strength
in the Bayesian-model sense originally gave NBC an advantage over the raw data-based
models employed by the other networks. For example, in 1976, NBC called 94 out of 95
races correctly (only the Presidential race in Oregon remained too close to determine) and
made several calls of outcomes when the overall percentages favored the eventual loser. In
the Texas Presidential race, another network called the Republican candidate as the winner
early in the evening at a time when the NBC model was showing the Democratic candidate
ahead (but with a large mean square error). Later this call was retracted and NBC was the
Ærstto call the Democrat the winner.

The 1980s brought a new phenomenon to U.S. election night predictions: the exit survey
of voters (see Link, 1989). As a consequence, the television networks have been able to
call most races long before the election polls have closed and before the precinct totals are
available. All of the fancy bells and whistles of the kind of Bayesian prediction system
designed by Bernardo and Girón or the earlier system designed by NBC have little use in
such circumstances, unless the election race is extremely close.

REPLY TO THE DISCUSSION

We are grateful to Professor Pericchi for his valuable comments and for his wish that
all go worked well on election night. As described in the Appendix above, his wish was
reasonably well achieved.

He also refers to the possibility of sequential updating, also mentioned in our Ænal
discussion. Assuming, as we do in sections 2 and 4, the hypothesis of exchangeability in
the swings –which implies that the Ci matrices in the model are of the form kiI– the
derivation of recursive updating equations for the parameters of the posterior of Θ1 given the
data y1, . . . ,yt, for t = 1, . . . , n, is straightforward. However, no simple recursive updating
formulae seem to exist for the parameters of the predictive distribution (4.2), due to the
complexity of the model (4.1) and to the fact that the order in which data from the polling
stations arrive is unknown a priori and, hence, the matrix W used for prediction varies with
n in a form which depends on the identity of the new data.

We agree with Pericchi that weak robustness, while being an interesting theoretical ex-
tension to the usual hierarchical normal model, may not be enough for detecting gross errors.
As we prove in the paper, weak robustness of the posterior mean –which is linear in the
observations– is obtained under the error speciÆcationgiven by (3.6), independently of
F (Λ).
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To obtain strong robustness of the estimators, exchangeabilty should be abandoned in
favour of independence. Thus, the Ærstequation in model (4.1), should be replaced by

xi = a′
iΘ1 + ui, i = 1, . . . , n,

where the a′
i’s are the rows of matrix A1, and the error matrix U ′

i = (u′
1, . . . ,u

′
n) is such

that the error vectors ui are independent and identically distributed as scale mixtures of
multivariate normals, i.e., ui ∼

∫
N(0, k1Λ) dF (Λ).

Unfortunately, under these conditions, no closed form for the posterior is possible, except
for the trivial case where F (·) is degenerate at some matrix, say, Σ. In fact, the posterior
distribution of Θ1 given the data is a very complex inÆnitemixture of matrix-normal distri-
butions. Thus, in order to derive useful robust estimators, we have to resort to approximate
methods. One possibility, which has been explored by Rojano (1991) in the context of dy-
namic linear models, is to update the parameters of the MHLM sequentially, considering
one observation at a time, as pointed out above, thus obtaining a simple inÆnitemixture of
matrix-normals, and then to approximate this mixture by a matrix-normal distribution, and
proceed sequentially.

Professor Dawid refers again to the fact that the method described is not outlier-robust.
Pragmatically, we protected ourselves from extreme outliers by screening out from the fore-
casting mechanism any values which were more than three standard deviations off under the
appropriate predictive distribution, conditional on the information currently variable. Ac-
tually, we are developing a sequential robust updating procedure based on an approximate
Kalman Ælterscheme adapted to the hierarchical model, that both detects and accomodates
outliers on line.

We are grateful to Professor Fienberg for his detailed description of previous work on
election forecasting. We should like however to make a couple of points on his Ænalremarks.

(i) Predicting the winner in a two party race is far easier that predicting a parliamentary
seat distribution among several parties.

(ii) In our experience, exit surveys show too much uncontrolled bias to be useful, at least if
you have to forecast a seat distribution.
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SUMMARY

A frequent statistical problem is that of predicting a set of quantities given the values of some covariates,
and the information provided by a training sample. These prediction problems are often structured
with hierarchical models that make use of the similarities existing within classes of the population.
Hierarchical models are typically based on a ‘natural’ definition of the clustering which defines the
hierarchy, which is context dependent. However, there is no assurance that this ‘natural’ clustering
is optimal in any sense for the stated prediction purposes. In this paper we explore the this issue by
treating the choice of the clustering which defines the hierarchy as a formal decision problem. Actually,
the methodology described may be seen as describing a large class of new clustering algorithms. The
application which motivated this research is briefly described. The argument lies entirely within the
Bayesian framework.

Keywords: BAYESIAN PREDICTION; HIERARCHICAL MODELLING; ELECTION FORECASTING;

LOGARITHMIC DIVERGENCE; PROPER SCORING RULES; SIMULATED ANNEALING.

1. INTRODUCTION

Dennis Lindley taught me that interesting problems often come from interesting applications.
Furthermore, he has always championed the use of Bayesian analysis in practice, specially when
this has social implications. Thus, when I was asked to prepare a paper for a book in his honour,
I thought it would be specially appropriate to describe some research which originated on a
socially interesting area, –politics–, and may be used to broaden the applications of one of the
methodologies he pioneered, –hierarchical linear models–.

2. THE PREDICTION PROBLEM

Let Ω be a set of N elements, let y be a, possibly multivariate, quantity of interest which
is defined for each of those elements, and suppose that we are interested in some, possibly
multivariate, function

t = t(y1, . . . ,yN )

José M. Bernardo is Professor of Statistics at the University of Valencia, and Adviser for Decision Analysis to
the President of the State of Valencia. This paper will appear in Aspects of Uncertainty, a Tribute to D. V. Lindley
(P. R. Freeman and A. F. M. Smith, eds.) New York: Wiley, 1994.
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of the values of these vectors over Ω. Suppose, furthermore, that a vector x of covariates is also
defined, that its values {x1, . . . ,xN} are known for all the elements is Ω, and that a random
training sample

zn = {(xi,yi), i = 1, . . . , n},
which consists of n pairs of vectors (x,y), has been obtained. From a Bayesian viewpoint, we
are interested in the predictive distribution

p(t |zn,xn+1, . . . ,xN ).

If the set Ω could be partitioned into a class C = {Ci, i ∈ I} of disjoint sets such that
within each Ci the relationship between y and x could easily be modelled, it would be natural
to use a hierarchical model of the general form

p(yj |xj,θi[j]), ∀j ∈ Ci

p(θ |ϕ) (1)

p(ϕ)

where i[j] idenfifies the class Ci to which the j-th element belongs, p(y |x,θi) is a conditional
probability density, totally specified by θi, which models the stochastic relationship between y
andxwithinCi, p(θ |ϕ)describes the possible interrelation among the behaviour of the different
classes, and p(ϕ) specifies the prior information which is available about such interrelation.

Given a specific partition C, the desired predictive density p(t |zn,xn+1, . . . ,xN ) may be
computed by:

(i) deriving the posterior distribution of the θi’s,

p(θ |zn,C) ∝
∫ n∏

j=1

p(yj |xj,θi[j])p(θ |ϕ) p(ϕ) dϕ; (2)

(ii) using this to obtain the conditional predictive distribution of the unknown y’s,

p(yn+1, . . . ,yN |xn+1, . . . ,xN,zn,C) =
∫ N∏

j=n+1

p(yj |xj,θi[j])p(θ |zn,C) dθ; (3)

(iii) computing the desired predictive density

p(t |zn,xn+1, . . . ,xN,C) = f [y1, . . . ,yn, p(yn+1, . . . ,yN |xn+1, . . . ,xN,zn)] (4)

of the function of interest t as a well-defined probability transformation f of the joint predic-
tive distribution of the unknown y’s, given the appropriate covariate values {xn+1, . . . ,xN}
and the known y values {y1, . . . ,yn}.

This solution is obviously dependent on the particular choice of the partition C. In this
paper, we consider the choice of C as a formal decision problem, propose a solution, which
actually provides a new class of (Bayesian) clustering algorithms, and succinctly describe the
case study, –Mexican State elections–, which actually motivated this research.
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3. THE DECISION PROBLEM

The choice of the partition C may be seen as a decision problem where the decision space is
the class of the 2N parts of Ω , and the relevant uncertain elements are the unknown value of the
quantity of interest t, and the actual values of the training sample zn. Hence, to complete the
specification of the decision problem, we have to define a utility function u[C, (t,zn)] which
measures, for each pair (t,zn), the desirability of the particular partition C used to build a
hierarchical model designed to provide inferences about the value of t, given the information
provided by zn.

Since, by assumption, we are only interested in predicting t given zn, the utility function
should only depend on the reported predictive distribution for t, say qt(. |zn,C), and the actual
value of t, i.e., should be of the form

u[C, (t,zn)] = s[qt(. |zn,C), t]. (5)

The function s is known is the literature as a score function, and it is natural to assume that
it should be proper, i.e., such that its expected value should be maximized if, and only if, the
reported prediction is the predictive distribution pt(. |zn,xn+1, . . . ,xN,C). Furthermore, in
a pure inferential situation, one may want the utility of the prediction to depend only on the
probability density it attaches to the true value of t. In this case (Bernardo, 1979), the score
function must be of the form

s[qt(. |zn,C), t] = A log[p(t |zn,xn+1, . . . ,xN,C)] + B, A > 0. (6)

Although, in our applications, we have always worked with this particular utility function, the
algorithms we are about to describe may naturally be used with any utility function u[C, (t,zn)].

For a given utility function u and sample size n the optimal choice of C is obviously that
which maximizes the expected utility

u∗[C |n] =
∫ ∫

u[C, (t,zn)] p(t,zn) dt dzn. (7)

An analytic expression for u∗[C |n] is hardly ever attainable. However, it is not difficult to
obtain a numerical approximation. Indeed, using Monte Carlo to approximate the outer integral,
the value of u∗[C |m], for m < n may be expressed as

u∗[C |m] ≈ 1
k

k∑
l=1

∫
u[C,zm(l), t)] p(t |zm(l)) dt, (8)

where zm(l) is one of k random subselections of size m < n from zn. This, in turn, may be
approximated by

u∗[C |m] ≈ 1
k

k∑
l=1

1
ns

ns∑
j=1

u[C,zm(l), tj)], (9)

where tj is one of nj simulations obtained, possibly by Gibbs sampling, from p(t |zm(l)).
Equation (9) may be used to obtain an approximation to the expected utility of any given

partition C. By construction, the optimal partition will agglomerate the elements of Ω in a form
which is most efficient if one is to predict t given zn. However, the practical determination of
the optimal C is far from trivial.
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4. THE CLUSTERING ALGORITHM

In practical situations, where N may be several thousands, an exhaustive search among all
partitions C is obviously not feasible. However, the use of an agglomerative procedure to
obtain a sensible initial solution, followed by an application of a simulated annealing search
procedure, leads to practical solutions in a reasonable computing time.

In the aglomerative initial step, we start from the partition which consists of all the N
elements as classes with a single element, and proceed to a systematic agglomeration until
the expected utility is not increased by the process. The following, is a pseudocode for this
procedure.

C := {all elements inΩ}
repeat

for i:=1 to N
for j:=i + 1 to N

begin
C∗ := C 	 (i, j), {Ci → Ci ∪ Cj)}
if u∗[C∗] > u∗[C] then C := C∗

end
until No Change

The result of this algorithm may then be used as an initial solution for a simulated annealing
procedure. Simulated annealing is an algorithm of random optimization which uses as a heuristic
base the process of obtaining pure crystals (annealing), where the material is slowly cooled,
giving time at each step for the atomic structure of the crystal to reach its lowest energy level at the
current temperature. The method was described by Kirkpatrick, Gelatt and Vechhi (1983) and
has seen some statistical applications, such as Lundy (1985) and Haines (1987). The algorithm
is special in that, at each iteration, one may move with positive probability to solutions with
lower values of the function to maximize, rather than directly jumping to the point with the
highest value within the neighborhood, thus drastically reducing the chances of getting trapped
in local maxima. The following, is a pseudocode for this procedure.

get Initial Solution C0, Initial Temperature t0, Initial Distance d0;
C := C0; t := t0; d := d0;
repeat
while (not d-Finished) do

begin
while (not t-Optimized) do

begin
Choose Random(Ci | d)
δ := u∗[Ci] − u∗[C0]
if (δ ≥ 0) then C := Ci

else if (exp{−δ/t} ≤ Random) then C := Ci

end;
t := t/2

end;
Reduce Distance(d)
until d < ε

In the annealing procedure, the distance among two partitions is defined as the number of
different classes it contains.
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5. AN APPLICATION TO ELECTION FORECASTING

Consider a situation where, on election night, one is requested to produce a sequence of
forecasts of the final result, based on incoming returns. Since the results of the past election are
available for each polling station, each incoming result may be compared with the corresponding
result in the past election in order to learn about the direction and magnitude of the swing for
each party. Combining the results already known with a prediction of those yet to come, based
on an estimation of the swings, in each of a set of appropriately chosen strata, one may hope to
produce accurate forecasts of the final results.

In Bernardo and Girón (1992), a hierarchical prediction model for this problem was devel-
oped, using electoral districts within counties as a ‘natural’ partition for a three stage hierarchy,
and the results were successfully applied some weeks later to the Valencia State Elections.
One may wonder, however, whether the geographical clustering used in the definition of the
hierarchical model is optimal for the stated prediction purposes.

With the notation of this paper, a two-stage hierarchical model for this problem is defined
by the set of equations

yj[i] = xj[i] + θi + ε0j[i], j ∈ Ci, p(ε0j[i] |α0), E[ε0j[i]] = 0

θi = ϕ + ε1i, i ∈ I, p(ε1i |α1), E[ε1i] = 0 (10)

π(ϕ,α0,α1)

where yj[i] is the vector which describes the results on the new election in polling station j
which belongs to class Ci, xj[i] contains the corresponding results in the past election, the
error distributions of ε0 = (ε01[1], . . . , ) and ε1 = (ε11, . . . , ), p(ε0 |α0) and p(ε1 |α1), have
zero mean and are fully specified by the hiperparameters α0 and α1, and π(ϕ,α0,α1) is the
reference distribution (Berger and Bernardo, 1992) which corresponds to this model.

The function of interest is the probability vector which describes the final results of the new
election, i.e.,

t =
∑
i∈I

∑
j∈Ci

βj[i]yj[i] (11)

where βj[i] is the (known) proportion of the population which lives in the poling station j of
class Ci. The posterior distribution of t may be derived using the methods described above.

In this particular application, however, interest is essentially centered on a good estimate
of t. Given some results from the new election, i.e., the training sample zn, the value of t may
be decomposed into its known and unknown parts, so that the expected value of the posterior
distribution of t may be written as

E[t |zn] =
∑
i∈I

∑
j∈ Obs

βj[i]yj[i] +
∑
i∈I

∑
j∈ NoObs

βj[i]E[yj[i] |zn], (12)

where

E[yj[i] |zn] = xj[i] +
∫ ∫

E[θi |zn,α0,α1] p(α0,α1 |zn) dα0 dα1. (13)

The conditional expectation within the double integral may be analytically found under dif-
ferent sets of conditions. In their seminal paper on hierarchical models, Lindley and Smith (1972)
already provided the relevant expressions under normality, when y is univariate. Bernardo and
Girón (1992) generalize this to multivariate models with error distributions which may be
expressed as scales mixtures of normals; this includes heavy tailed error distributions such



6 J. M. Bernardo

as the matrix-variate Student t’s. If an analytical expression for the conditional expectation
E[θi |zn,α0,α1] may be found, then an approximation to E[yj[i] |zn] may be obtained by
using Gibbs sampling to approximate the expectation integral.

In particular, when the error structure may be assumed to have the simple form

D2[ε0 |h0,Σ] =
1
h0

(I ⊗ Σ), D2[ε1 |h1,Σ]] =
1
h1

(I ⊗ Σ), (14)

where the I’s are identity matrices of appropriate dimensions and ⊗ denotes the Kronecker
product of matrices, and when the error distribution is expressable as a scale mixture of normals,
then the conditional reference reference distribution π(ϕ, |h0, h1,Σ) is uniform and the first
moments of the conditional posterior distribution of the θi’s are given by

E[θi |zn, h0, h1,Σ] =
nih0r.i + h1r..

nih0 + h1
(15)

D2[θi |zn, h0, h1,Σ] =
1

nih0 + h1
Σ, (16)

where ni is the number of polling stations the sample which belong to class Ci,

r.i =
1
ni

∑
j∈Ci

(
yj[i] − xj[i]

)
, i ∈ I (17)

are the average sample swings within class Ci, and

r.. =
1
n

n∑
j=1

yj − xj = r.i (18)

is the overall average swing.
Since (14) are the rather natural assumptions of exchangeability within classes, and ex-

changeability among classes, and (15) remains valid for rather general error distributions, (12),
(13), and Gibbs integration over (15) provide together a practical mechanism to implement the
model described.

6. A CASE STUDY: STATE ELECTIONS IN MEXICO

On February 1993, I was invited by the Mexican authorities to observe their Hidalgo State
elections, in order to report on the feasibility of implementing in Mexico the methods developed
in Valencia. Although I was not supposed to do any specific analysis of this election, I could
not resist the temptation of trying out some methods.

I had taken with me the code of the algorithm I use to select a set of constituencies which,
when viewed as a whole, have historically produced, for each election, a result close to the
global result. The procedure, which is another application of simulated annealing, is described
in Bernardo (1992).

Using the results of the 1989 election in Hidalgo (which were the only available ones), I
used that algorithm to select a set of 70 polling stations whose joint behaviour had been similar
to that of the State as a whole, and suggested that the local authorities should send agents to
those polling stations to report on the phone the corresponding returns as soon as they were
counted. A number of practical problems reduced to 58 the total number of results which were
available about two hours after the polling stations closed.
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In the mean time, I was busy setting up a very simple forecasting model –with no hierarchies
included–, programmed in Pascal in a hurry on a resident Macintosh, to forecast the final results
based on those early returns. This was in fact the particular case which corresponds to the model
described in Section 4, if the partition C is taken to have a single class, namely the whole Ω.

About 24 hours later, just before the farewell dinner, the provisional official results came in.
Table 1, Line 1, contains the official results, in percentage of valid votes of PAN (right wing),
PRI (government party), PRD (left wing) and other parties. As it is apparent from Table 1,
Line 2, my forecasts were not very good; the mean absolute error (displayed as the loss column
in the table, was 3.28. Naturally, as soon as I was back in Valencia, I adapted the hierarchical
software which I have been using here. The results (Table 1, Line 3) were certainly far better,
but did not quite met the standards I was used to in Spain.

State of Hidalgo, February 21st, 1993

PAN PRI PRD Others Loss

Oficial Results 8.30 80.56 5.56 5.56

No hierarchies 5.5 76.8 9.3 8.4 3.28

Districts as clusters 6.4 80.6 7.7 5.3 1.09

Optimal clustering 8.23 80.32 6.18 5.27 0.31

Table 1. Comparative methodological analysis.

On closer inspection, I discovered that the variances within the districts used as clusters in
the hierarchical model were far higher than the corresponding variances in Spain. This prompted
an investigation on the possible ways to reduce such variances and, naturally, this lead to the
general procedures described in this paper.

We used repeated random subselection of size 58 from the last election results in Hidalgo in
order to obtain, –using the algorithms described in Section 3–, the 1989 optimal partition of the
polling stations. In practice, we made the exangeability assumptions described by (14), assumed
Cauchy error distributions, and chose a logarithmic scoring rule. We then used this partition to
predict the 1993 election, using the two-stage hirearchical model described in Section 4 and the
58 available polling station results. The results are shown in Table 1, Line 4; it is obvious from
them that the research effort did indeed have a practical effect in the Hidalgo data set.

7. DISCUSSION

Prediction with hierarchical models is a very wide field. Although very often, the clustering
which defines the hierarchy has a natural definition, this is not necessarily optimal from a
prediction point of view. If the main object of the model is prediction, it may be worth to
explore alternative hierarchies, and the preceding methods provide a promising way to do this.

Moreover, there are other situations where the appropriate clustering is less than obvious.
For instance, a model similar to that described here may be used to estimate the total personal
income of a country, based on the covariates provided by the census and a training sample which
consists of the personal incomes of a random sample of the population and their associated census
covariates. The clustering which would be provided by the methods described here may have
indeed an intrinsic sociological interest, which goes beyond the stated prediction problem.
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Finally, the whole system may be seen as a proposal of a large class of well-defined clustering
algorithms, where –as one would expect in any Bayesian solution–, the objectives of the problem
are precisely defined. These could be compared with the rather ad hoc standard clustering
algorithms as explorative data analysis methods used to improve our understanding of complex
multivariate data sets.
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JOSÉ M. BERNARDO

Universitat de València, Spain

SUMMARY

This paper summarizes the procedures which have been set up during the last years at the Government
of the State of Valencia, Spain, to systematically probe its public opinion as an important input into its
decision processes.

After a brief description of the electoral setup, we (i) outline the use of a simulated annealing
algorithm, designed to find a good design for sample surveys, which is based on the identification of
representative electoral sections, (ii) describe the methods used to analyze the data obtained from sample
surveys on politically relevant topics, (iii) outline the proceedings of election day —detailing the special
problems posed by the analysis of exit poll, representative sections, and early returns data— and (iv)
describe a solution to the problem of estimating the political transition matrices which identify the
reallocation of the vote of each individual party between two political elections.

Throughout the paper, special attention is given to the illustration of the methods with real data.
The arguments fall entirely within the Bayesian framework.

Keywords: BAYESIAN PREDICTION; HIERARCHICAL MODELLING; ELECTION FORECASTING;

LOGARITHMIC DIVERGENCE; SAMPLE SURVEYS; SIMULATED ANNEALING.

1. INTRODUCTION

The elections held in the State of Valencia on May 28, 1995 gave the power to the Conservatives
after sixteen years of Socialist government. During most of the socialist period, the author
acted as a scientific advisor to the State President, introducing Bayesian inference and decision
analysis to systematically probe the State’s public opinion, with the stated aim of improving the
democratic system, by closely taking into account the peoples’ beliefs and preferences. This
paper summarizes the methods used —always within the Bayesian framework— and illustrates
their behaviour with real data.

Section 2 briefly describes the electoral setup, which allows a very detailed knowledge
of the electoral results —at the level of polling stations,— and which uses Jefferson-d’Hondt

José M. Bernardo is Professor of Statistics at the University of Valencia. Research was partially funded with
grant PB93-1204 of the DGICYT, Madrid, Spain.
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algorithm for seat allocation. Section 3 focuses on data selection, describing the use of a
simulated annealing algorithm in order to find a good design for sample surveys, which is based
on the identification of a small subset of electoral sections that closely duplicates the State
political behaviour.

Section 4 describes the methods which we have mostly used to analyze the data obtained
from sample surveys, while Section 5 specializes on election day, describing the methods used to
obtain election forecasts from exit poll, representative sections, and early returns data. Special
attention is given to the actual performance of the methods described in the May 95 State
election.

Section 6 describes a solution to the problem of estimating the political transition matrices
which identify the reallocation of the vote of each individual party between two political elec-
tions. Finally, Section 7 contains some concluding remarks and suggests areas of additional
research.

2. THE ELECTORAL SYSTEM

The State of Valencia is divided into three main electoral units, or provinces, Alicante,
Castellón and Valencia, each of which elects a number or seats which is roughly proportional
to its population. Thus, the State Parliament consists of a single House with 89 seats, 30 of
which are elected by Alicante, 22 by Castellón and 37 by Valencia. The leader of the party or
coalition that has a plurality of the seats is appointed by the King to be President of the State.

The seats in each province are divided among the parties that obtain at least 5% of the
vote in the State according to a corrected proportional system, usually known as the d’Hondt
rule —invented by Thomas Jefferson nearly a century before Victor d’Hondt rediscovered and
popularized the system— and used, with variations, in most parliamentary democracies with
proportional representation systems.

Table 1. d’Hondt table for the results of province of Valencia in 1995 State elections

PP PSOE EU UV

1 532524 429840 166676 137277
2 266262 214920 83338 68639
3 177508 143280 55559 45759
4 133131 107460 41669 34319
5 106505 85968 33335 27455
6 88754 71640 27779 —
7 76075 61406 — —
8 66566 53730 — —
9 59169 47760 — —

10 53252 42984 — —
11 48411 39076 — —
12 44377 35820 — —
13 40963 33065 — —
14 38037 — — —
15 35502 — — —
16 33283 — — —
17 31325 — — —
18 — — — —
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According to d’Hondt rule, to distributens seats among the, say, k parties that have overcome
the 5% barrier, one (i) computes the ns × k matrix of quotients with general element

zij = nj/i, i = 1, . . . , ns, j = 1, . . . , k,

wherenj is the number of valid votes obtained by the jth party, (ii) selects the largestns elements
and (iii) allocates to party j a number of seats equal to the number of these ns largest elements
found in its corresponding column. Clearly, to apply d’Hondt rule, one may equivalently use
the proportion of valid votes obtained by each party, rather than the absolute number of votes.

Thus if, for example, the 37 seats that corresponds to the province of Valencia are to be
distributed among the four parties PP (conservatives), PSOE (socialists), EU (communists)
and UV (conservative nationalists) who have respectively obtained (May 1995 results) 532524,
429840, 166676 and 137277 votes in the province of Valencia and over 5% of the State votes
—the remaining 46094 counted votes being distributed among parties which did not make the
overall 5% barrier— one forms the matrix in Table 1 and, according to the algorithm described,
associates 16 seats to PP, 12 to PSOE, 5 to EU and 4 to UV.

It may be verified that the d’Hondt rule provides a corrected proportional system that en-
hances the representation of the big parties to the detriment of the smaller ones, but the correction
becomes smaller as the number of seats increases, so that a pragmatically perfect proportional
representation may be achieved with d’Hondt rule if the number of seats is sufficiently large.
Indeed, if only one seat is allocated, d’Hondt rule obviously reduces to majority rule but, as the
number of seats increases, d’Hondt rule rapidly converges to proportional rule: with the results
described above, a proportional representation would yield 15.56, 12.56, 4.87 and 4.01, not far
from the 16, 12, 5 and 4 integer partition provided by d’Hondt rule. Note that the last, 37th
seat, was allocated to the conservative PP rather than to the socialist PSOE by only an small
proportion, (33283 − 33065) ∗ 13 = 2836 or 0.22/%, of the 1312411 votes counted

Since seats —and hence political power— are allocated by province results, and since
there are some very noticeable differences in the political behaviour of the provinces —for
instance the conservative nationalists UV are barely present outside the province of Valencia—
most political analysis of the State are better done at province level, aggregating the provincial
forecast in a final step.

Each province is divided into a variable number of electoral sections, each containing
between 500 and 2000 electors living in a tiny, often socially homogeneous, geographical area.
The State of Valencia is divided into 4484 electoral sections, 1483, 588 and 2410 of which
respectively correspond to the provinces of Alicante, Castellón and Valencia. Votes are counted
in public at each electoral section, just after the vote is closed at 8 pm. This means that at about
9 pm someone attending the counting may telephone to the analysis center the final results from
that section; these data may be used to make early predictions of the results. Since the definition
of the electoral sections has remained fairly stable since democracy was restored in Spain in
1976, this also means that a huge electoral data base, which contains the results of all elections
(referendums, local, state, national and european elections) at electoral section level, is publicly
available. In the next section we will describe how this is used at the design stage.

3. SURVEY DESIGN

In sample surveys, one typically has to obtain a representative sample from a human population,
in order to determine the proportion ψ ≡ {ψ1, . . . , ψk}, (ψj > 0,Σψj = 1) of people who
favor one of a set of, say k, possible alternative answers to a question. Naturally, most surveys
contain more than one question, but we may safely ignore this fact in this discussion. Typically,
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the questionnaire also includes information on possible relevant covariates, such as sex, age,
education, or political preferences.

Within the Bayesian framework, the analysis of the survey results essentially consists on
the derivation of the posterior distribution of ψ = {ψ1, . . . , ψk}. A particular case of frequent
interest is that of election forecasting, where the ψj’s, j = 1, . . . , k describe the proportion of
the valid vote which each of the, say, k parties will eventually obtain.

The selection of the sample has traditionally been made by the use of the so-called “random”
routes, which, regrettably, are often far from random. The problem lies in the fact that there is
no way to guarantee that the attitudes of the population with respect to the question posed are
homogeneous relative to the design of the “random” route. Indeed, this has produced a number
of historical blunders.

An obvious alternative would be to use a real random sample, i.e., to obtain a random
sample from the population census —which is publicly available and contains name, address,
age, sex and level of education of all citizens with the right to vote— and to interview the
resulting people. The problem with this approach is that it produces highly scattered samples,
what typically implies a very high cost. A practical alternative would be to determine a set
of geographically small units who could jointly be considered to behave like the population as
a whole, and to obtain the sample by simple random sampling within those units. Since the
political spectrum of a democratic society is supposed to describe its diversity, and since the
results of political elections are known for the small units defined by the electoral sections, a
practical implementation of this idea would be to find a small set of electoral sections whose joint
political behaviour has historically been as similar as possible to that of the whole population,
and to use those as the basis for the selection of the samples. We now describe how did we
formalize this idea.

To design a survey on a province with, say, np electoral sections —which on election day
become np polling stations— may be seen as a decision problem where the action space is
the class of the 2np possible subsets of electoral sections, and where the loss function which
describes the consequences of choosing the subset s should be a measure of the discrepancy
l(ψ̂s,ψ) between the actual proportions ψ ≡ {ψ1, . . . , ψk} of people which favor each of the
k alternatives considered, and the estimated proportions ψ̂s ≡ {ψ̂s1, . . . , ψ̂sk} which would be
obtained from a survey based of random sampling from the subset s. The optimal choice would
be that minimizing the expected loss

E[l(s) |D] =

∫
Ψ
l(ψ̂s,ψ) p(ψ |D) dψ, (1)

where D is the database of relevant available information.

Since preferences within socially important questions may safely be assumed to be closely
related with political preferences, the results of previous elections may be taken a as proxy for
a random sample of questions, in order to approximate by Monte Carlo the integral above.

To be more specific, we have to introduce some notation. Let θe = {θe1, . . . , θek(e)}, for
e = 1, . . . , ne, be the province results on ne elections; thus, θej is the proportion of the valid
vote obtained by party j in election e, which was disputed among k(e) parties. Similarly, let
wel = {wel1, . . . , welk(e)}, e = 1, . . . , ne and, l = 1, . . . , np be the results of the ne elections
in each of the np electoral sections in which the province is divided.

Each of the 2np possible subsets may be represented by a sequence of 0’s and 1’s of length
np, so that s ≡ {s1, . . . , snp} is the subset of electoral sections for which sl = 1. Taken as a
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whole, those electoral sections would produce an estimate of the provincial result for election
e, which is simply given by the arithmetic average of the results obtained in them, i.e.,

θ̂es =
1∑np
l=1 sl

np∑
l=1

slwel. (2)

Thus, if election preferences may be considered representative of the type of questions
posed, a Monte Carlo approximation to the integral (1) is given by

E[l(s) |D] � 1

ne

ne∑
e=1

l(θ̂es,θe) (3)

A large number of axiomatically based arguments (see e.g., Good, 1952, and Bernardo,
1979) suggest that the most appropriate measure of discrepancy between probability distribu-
tions is the logarithmic divergence

δ{θ̂es,θe} =

k(e)∑
j=1

θej log
θej

θ̂sej
(4)

so that we have to minimize
ne∑
e=1

k(e)∑
j=1

θej log
θej

θ̂sej
. (5)

However, this is a really huge minimization problem. For instance, for the province of
Alicante, the action space thus has 21483 points, what absolutely forbids to compute them all.
To obtain a solution, we decided to use a random optimization algorithm, known as simulated
annealing.

Simulated annealing is an algorithm of random optimization which uses as a heuristic base
the process of obtaining pure crystals (annealing), where the material is slowly cooled, giving
time at each step for the atomic structure of the crystal to reach its lowest energy level at the
current temperature. The method was described by Kirkpatrick, Gelatt and Vecchi (1983) and
has seen some statistical applications, such as Lundy (1985) and Haines (1987).

Consider a function f(x) to be minimized for x ∈ X . Starting from an origin x0 with
value f(x0) —maybe a possible first guess on where the minimum may lie—, the idea consists
of computing the value f(xi+1) of the objective function f at a random point xi+1 at distance
d of xi; one then moves to xi+1 with probability one if f(xi+1) < f(xi), and with probability
exp{−δ/t} otherwise, where δ = f(xi+1) − f(xi), and where t is a parameter —initially set
at a large value— which mimics the temperature in the physical process of crystallization.

Thus, at high temperature, i.e., at the beginning of the process, it is not unlikely to move
to points where the function actually increases, thus limiting the chances of getting trapped in
local minima. This process is repeated until a temporary equilibrium situation is reached, where
the objective value does not change for a while.

Once in temporary equilibrium, the value of t is reduced, and a new temporary equilibrium
is obtained. The sequence is repeated until, for small t values, the algorithm reduces to a rapidly
convergent non-random search. The method is applied to progressively smaller distances, until
an acceptable precision in reached.
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The optimization cycle is typically ended when the objective value does not change for a
fixed number of consecutive tries. The iteration is finished when the final non-random search
is concluded. The algorithm is terminated when the final search distance is smaller than the
desired precision.

In order implement the simulated annealing algorithm is further necessary to define what it
is understood by “distance” among sets of electoral sections. It is natural to define the class of
sets which are at distance d of sj as those which differ from sj in precisely d electoral sections.
Thus

d{si, sj} =

np∑
l=1

||sil − sjl|| (6)

All which is left is to adjust the sequence of “temperatures” t —what we do interactively—
and to choose a starting set s0 which may reasonably chosen to be that of the, say, n0, polling
stations which are closest in average to the global value, i.e., those which minimize

1

ne

ne∑
i=1

δ{ωel,θe}. (7)

To offer an idea of the practical power of the method, we conclude this section by describing
the results actually obtained in the province of Alicante.

The province has 1483 electoral sections, so we have 21483 ≈ 10446 possible subsets. For
these these 1483 sections we used the results obtained by the four major parties —PP, PSOE,
EU and UV, grouping as “others” a large group of small, nearly testimonial parties— in four
consecutive elections, local (1991), State (1991), national (1993) and european (1994). Thus,
with the notation above we had ne = 4, np = 1483 and k(e) = 5. For a mixture of economical
and political considerations, we wanted to use at least 20 and no more than 40 electoral sections.
Thus, starting with the set s0 of the 20 sections which, averaging over these four elections, where
closest to the provincial result in a logarithmic divergence set, we run the annealing algorithm
with imposed boundaries at sizes 20 and 40. The final solution —which took 7 hours on a
Macintosh— was a set of 25 sections whose behaviour is described in Table 2.

For each of the four elections whose data were used, the table provides the actual results in the
province of Alicante —in percentages of valid votes—, the estimators obtained as the arithmetic
means of the results obtained in the 25 selected sections, and their absolute differences. It may
be seen that those absolute differences are all between 0.01% 0.36%. The final block in Table 2
provides the corresponding data for the May 95 State elections, which were not used to find the
design. The corresponding absolute errors —around 0.4, with corresponding relative errors of
about 3%— are much smaller than the sampling errors which correspond to the sample sizes
(about 400 in each province) which were typically used. Very similar results were obtained for
the other provinces.

Our sample surveys have always been implemented with home interviews on citizens ran-
domly selected from the representative sections using the electoral census. Thus, we could
provide the interviewers with list of the people to be interviewed which included their name,
address, and the covariates sex, age and level of education. The lists contained possible re-
placements with people of identical covariates, thus avoiding the danger of over representing
the profiles which corresponded to people who are more often home.
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Table 2. Performance of the design algorithm for the province of Alicante in the 1995 State elections

PP PSOE EU UV

Local 91 Results 31.50 43.17 7.23 1.22
Estimators 31.30 43.32 7.24 1.32
Abs. Dif. 0.20 0.15 0.01 0.09

State 91 Results 33.55 45.05 7.37 1.75
Estimators 33.36 45.05 7.33 1.74
Abs. Dif. 0.19 0.01 0.05 0.01

National 93 Results 43.87 39.94 10.32 0.57
Estimators 43.64 39.75 10.62 0.49
Abs. Dif. 0.22 0.19 0.30 0.07

European 94 Results 47.62 32.38 13.53 1.43
Estimators 47.69 32.02 13.51 1.46
Abs. Dif. 0.07 0.36 0.02 0.03

State 95 Results 47.24 36.30 11.06 2.11
Estimators 48.26 36.33 10.50 1.79
Abs. Dif. 1.02 0.03 0.56 0.32

4. SURVEY DATA ANALYSIS

The structure of the questionnaires we mostly used typically consisted of a sequence of closed
questions –where a set of possible answers is given for each question, always leaving an “other
options” possibility for those who do no agree with any of the stated alternatives, and a “non-
response” option for those who refuse to answer a particular question. This was followed by a
number of questions on the covariates which identify the social profile of the person interviewed;
these typically include items such as age, sex, level of education, mother language or area of
origin.

Let us consider one of the questions included in a survey and suppose that it is posed
as a set of, say, k alternatives {δ1, . . . , δk} (including the “other options” possibility) among
which the person interviewed has to choose one and only one. The objective is to know the
proportions of people which favor each of the alternatives, both globally, and in socially or
politically interesting subsets of the population —that we shall call classes— as defined by
either geographical or social characteristics. When the possible answers are not incompatible
and the subject is allowed to mark more than one of them, we treated the multiple answer as a
uniform distribution of the person’s preferences over the marked answers and randomly choose
one of them, thus reducing the situation to one with incompatible answers.

Thus, if x = {x1, . . . , xv} denotes the set of, say, v covariates used to define the population
classes we may be interested in, the data D relevant to a particular question included in a survey
may described as a matrix which contains in each row the value of the covariates and the answer
to that question provided by each of the persons interviewed. Naturally, a certain proportion
of the people interviewed —typically between 20% and 40%— refuse to answer some the
questions; thus, if, say, n persons have actually answered and m have refused to answer a
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particular question its associated (n + m) × (v + 1) matrix is defined to be

D =

(
D1

D2

)
=




x1,1 . . . x1,v δ(1)
... . . .

...
...

xn,1 . . . xn,v δ(n)

xn+1,1 . . . xn+1,v −
... . . .

...
...

xn+m,1 . . . xn+m,v −




(8)

where xij is the value of jth covariate for the ith subject, and δ(i) denotes his or her preferences
among the proposed alternatives.

Our main objective is the set of posterior probabilities

E[ψ |D, c] = p(δ |D, c) = {p(δ1 |D, c), . . . , p(δk |D, c)}, c ∈ C, (9)

which describe the probabilities that a person in class c prefers each of the k possible alternatives,
for each of the classes c ∈ C being considered. The particular class which contains all the
citizens naturally provides the global results.

To compute these, we used the total probability theorem to ‘extend the conversation’ to
include the covariates x = {x1, . . . , xk}, so that

p(δ |D, c) =

∫
X

p(δ |x, D, c) p(x |D, c) dx (10)

where p(x |D, c) is the predictive distribution of the covariates vector.

Usually, the joint predictive p(x |D, c) is too complicated to handle, so we introduce a
relevant function t = t(x) which could be thought to be approximately sufficient in the sense
that, for all classes,

p(δ |x, D, c) ≈ p(δ | t, D, c), x ∈X (11)

and, thus, (10) may be rewritten as

p(δ |D, c) ≈
∫
T

p(δ | t, D, c) p(t |D, c) dt. (12)

We pragmatically distinguished two different situations:

1. Known marginal predictive. In many situations, t has only a finite number of possible values
with known distribution. For instance, we have often used as values for the relevant function t
the cartesian product of sex, age group (less than 35, 35–65 and over 65) and level of education
(no formal education, primary, high school and university); this produces a relevant function
with 2*3*4=24 possible values, whose probability distribution within the more obvious classes,
the politically relevant geographical areas, is precisely known from the electoral census. In this
case,

p(δ |D, c) =
∑

j
p(δ | tj,D, c)wjc,

∑
j
wjc = 1, (13)

where wjc denotes the weight within population class c of the subset of people with relevant
function value tj .
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2. Unknown marginal predictive. If the predictive distribution of t is unknown, or too difficult
to handle, we used the n+m random values of t included in the data matrix to approximate by
Monte Carlo the integral (12), so that

p(δ |D, c) =
1

n + m

n+m∑
j=1

p(δ | tj,D, c). (14)

It is important to note that, in both cases, the ‘extension of the conversation’ to include the
covariates automatically solved the otherwise complex problem of the non-response. Indeed, by
expressing the required posterior distributions as weighted averages of posterior distributions
conditional to the value of the relevant function, a correct weight was given to the different
political sectors of the population —as described by their relevant t values— whether or not
this distribution is the same within the non-response group and the rest of the population.

When the marginal predictive is known, those weights were directly input in (13), and only
the data contained in D1, i.e., those which correspond to the people who answered the question,
are relevant. When the marginal predictive is unknown, the weighting was done through (14)
and the whole data matrix D become relevant.

The unknown predictive case is an interesting example of probabilistic classification. In-
deed, it is as if, for each person with relevant function t who refuses to ‘vote’ for one of the
alternatives {δ1, . . . , δk}, one would distribute his or her vote as

{p(δ1 | t, D, c), . . . , p(δk | t, D, c)},
k∑

i=1

p(δi | t, D, c) = 1, (15)

i.e., proportionally to the chance that a person, in the same class and with the same t value,
would prefer each of the alternatives.

Equations (13) and (14) reformulate the original problem in terms of estimating the condi-
tional posterior probabilities (15). But, by Bayes’ theorem,

p(δi | t, D, c) ∝ p(t | δi,D, c) p(δi |D, c), i = 1, . . . , k. (16)

Computable expressions for the two factors in (16) are now derived.

If, as one would expect, the t’s may be considered exchangeable within each group of
citizens who share the same class and the same preferences, the representation theorems (see
e.g., Bernardo and Smith, 1994, Chapter 4, and references therein) imply that, for each class c
and preference δi, there exists a sampling model p(t |θic), indexed by a parameter θic which is
some limiting form of the observable t’s, and a prior distribution p(θic) such that

p(t | δi,D, c) =

∫
Θic

p(t |θic) p(θic |D) dθic (17)

p(θic |D) ∝
nic∏
j=1

p(tj |θic) p(θic), (18)

where, nic is the number of citizens in the survey which belong to class c and prefer option δi.
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In practice, we have mostly worked with a finite number of t values. In this case, for each
preference δi and class c, one typically has

p(tj |θic) = θjic
∑

j
θjic = 1, i = 1, . . . , k, c ∈ C (19)

where θjic is the chance that a person in class c who prefers the ith alternative would have
relevant value tj , i.e., a multinomial model for each pair {δi, c}.

We were always requested to produce answers which would only depend on the survey
results, without using any personal information that the politicians might have, or any prior
knowledge which we could elicitate from previous work, so we systematically produced refer-
ence analyses. Using the multinomial reference prior, (Berger and Bernardo, 1992)

π(θic) ∝
∏
j

{
θ
−1/2
jic

(
1 −

∑j

l=1
θlic

)−1/2
}

, (20)

we find
π(θic |D) ∝

∏
j

{
θ
njic
jic

}
π(θic), (21)

p(tj | δi,D, c) =

∫
Θic

θjic π(θic |D) dθic

= E[θjic |D] =
njic + 0.5

nic + 1

(22)

where njic is the number of citizens in the survey which share the relevant value tj among those
which belong to class c and prefer option δi. Note that the reference analysis produces a result
which is independent of the actual number of different t values, an important consequence of
the use of the reference prior.

The second factor in (16) is the unconditional posterior probability that a person in class c
would prefer option δi. With no other source of information, a similar reference multinomial
analysis yields

p(δi |D, c) =
nic + 0.5

nc + 1
, i = 1, . . . , k, (23)

where, again, nic is the number of citizens in the survey which belong to class c and prefer
option δi, and nc is the number of people in the survey that belong to class c and have answered
the question. Note again that the reference prior produces a result which is independent of the
number of alternatives, k.

Substituting (22) and (23) into (16) one finally has

p(δi | tj,D, c) ∝ njic + 0.5

nic + 1

nic + 0.5

nc + 1
, (24)

which is then used in either (13) or (14) to produce the final results.

Occasionally, we have used a more sophisticated hierarchical model, by assuming that for
each preference δi, the {θ1ic, θ2ic, . . . , }’s, c ∈ C, i.e., the parameters which correspond to
the classes actually used, are a random sample from some population of classes. In practice,
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Prioridades de la Generalitat

De entre los diferentes servicios públicos que gestiona la Generalitat Valenciana ¿puede decirme los que en
estos momentos deberían considerarse prioritarios?

1. Sanidad (ambulatorios, hospitales, control de alimentos, . . .).

2. Seguridad Ciudadana.

3. Vivienda (oferta y precios).

4. Educación (pública o subvencionada).

5. Medio Ambiente (humos, ruidos, basuras, . . .).

6. Tiempo Libre (instalaciones deportivas, espectáculos, exposiciones, . . .).

7. Infraestructuras viarias (autobuses, ferrocarriles, . . .).

8. Transporte público (autobuses, ferrocarriles,. . .)

9. Otras

1 2 3 4 5 Otr Totales

Comunidad Valenciana 34.9 19.1 13.6 14.2 11.4 6.8 1545

Provincia de Alicante 34.3 21.0 14.9 15.5 9.0 5.2 380

Provincia de Castellón 36.7 17.8 10.6 14.6 12.6 7.7 386

Provincia de Valencia 34.9 18.2 13.6 13.4 12.5 7.4 779
Ciudad de Valencia 34.1 17.6 15.6 14.3 10.5 8.0 389

Resto de Valencia 35.3 18.5 12.4 12.9 13.6 7.2 390

Intención voto Abs 33.0 21.2 18.4 13.6 8.5 5.3 255
PP 37.8 19.1 13.7 12.7 8.6 8.0 445

PSOE 36.4 22.9 10.6 11.0 11.6 7.6 340
EU 33.0 14.8 12.0 18.4 17.4 4.5 164
UV 39.4 21.2 5.3 10.0 16.2 8.0 68

Figure 1. Partial output of the analysis of one survey question

however we have found few instances where a hierarchical structure of this type may safely be
assured.

The methods described above were written in Pascal with the output formatted as a TEX
file, with all the necessary code built in. This meant that we were able to produce reports of
presentation quality only some minutes after the data were introduced, with the added important
advantage of eliminating the possibility of clerical errors in the preparation of the reports.

Figure 1 is part of the actual output of such a file. It describes a fraction of the analysis of
what the citizens of the State of Valencia thought the main priorities of the State Government
should be at the time when the 1995 budget was being prepared. The first row of the table gives
the mean of the posterior distribution of the proportions of the people over 18 in the State who
favors each of the listed alternatives, and also includes the total number of responses over which
the analysis is based. The other rows contain similar information relative to some conditional
distributions (area of residence and favoured political party). The software combines together
in ‘Others’ (Otr) all options which do not reach 5%. It may be seen from the table that it is
estimateat that about 34.9% of the population believes the highest priority should be given to the
health services, while 19.1% believes it should be given to law and order, and 14.2% believes
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it should be given to education; these estimates are based on the answers of the 1545 people
who completed this question. The proportion of people who believe education should be the
highest priority becomes 15.5% among the citizens of the province of Alicante, 13.6% among
those who have no intention to vote, 11.0% among the socialist voters and 18.4% among the
communist voters. The estimates provided were actually the means of the appropriate posterior
distributions; the corresponding standard deviations were also computed, but not included in
the reports in order to make those complex tables as readable as possble to politicians under
stress.

Occasionally, we posed questions on a numerical scale, often the [0–10] scale used at
Spanish schools. These included requests for an evaluation of the performance of a political
leader, and questions on the level of agreement (0=total disagreement, 10=total agreement) with a
sequence of statements designed to identify the people’s values. The answers to these numerical
questions were treated with the methods described above to produce probability distributions
over the eleven {0, 1, . . . , 10} possible values. These distributions were graphically reported
as histograms, together with their expected values. For instance, within the city of Valencia
in late 1994, the statement “My children will have a better life than I” got an average level of
agreement of 7.0, while “Sex is one of the more important things in life” got 5.0, “Spain should
have never joined the European union” 3.2, and “Man should not enter the kitchen or look after
the kids” only 2.0.

5. ELECTION NIGHT FORECASTING

On election days, we systematically produced several hours of evolving information. In this
section we summarize the methods we used, and illustrate them with the results obtained at the
May 28th, 1995 State election; the procedures used in other elections have been very similar.

Some weeks before any election we used the methodology described in Section 3 to obtain
a set of representative electoral sections for each of the areas we wanted to produce specific
results. In the May 95 election, a total of 100 sections were selected, in four groups of 25,
respectively reproducing the political behaviour of the provinces of Alicante and Castellón, the
city of Valencia, and the rest of the province of Valencia; these are the representative sections
we will be referring to.

5.1. The exit poll

An exit poll was conducted from the moment the polling stations opened at 9 am. People were
approached in their way out from the 100 representative polling stations. Interviewers handed
simple forms to as many people as possible, where they were asked to mark by themselves their
vote and a few covariates (sex, age, level of education, and vote in the previous election), and
to introduce the completed forms in portable urns held by the interviewers.

Mobile supervisors collected the completed forms, each cycling through a few stations, and
phoned their contents to the analysis center. Those answers (seven digits per person including
the code to identify the polling station) where typed in, and a dedicated programme automatically
updated the relevant sufficient statistics every few minutes.

The analysis was an extension of that described in Section 4. Each electoral section s was
considered a class, and an estimation of the proportion of votes,

{p(δ1 |D, s), . . . , p(δ1 |D, s)}, s ∈ S, (25)

that each of the parties δ1, . . . , δk could expect in that section, given the relevant data D, was
obtained by extending the conversation to include sex and age group, and using (13) rather than
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(14), since the proportions of people within each sex and age group combination was known
from the electoral census for all sections.

We had repeatdly observed that the logit transformations or the proportions are better
behaved than the proportions themselves. A normal hierarchical model on the logit transfor-
mations of the section estimates was then used to integrate the results from all the sections in
each province. Specifically, the logit transformations of the collection of k-variate vectors (25)
where treated as a random sample from some k-variate normal distribution with an unknown
mean vector µ = {µ1, . . . , µk} —which identify the logit transformation of the global results
in the province— and were used to obtain the corresponding reference posterior distribution for
µ, i.e., the usual k-variate Student t (see e.g., Bernardo and Smith, 1994, p. 441).

Monte Carlo integration was then used to obtain the corresponding probability distribution
over the seat allocation in the province. This was done by simulating 2,000 observations from
the posterior distribution of µ, using d’Hondt rule to obtain for each of those the corresponding
seat allocation, and counting the results to obtain a probability distribution over the possible
seat allocations and the corresponding marginal distributions on the number of seats which each
party may expect to obtain in the province. The simulations from the three provinces were
finally integrated to produce a forecast at State level.

The performance achieved by this type of forecast in practice is summarized in the first
block of Table 3.

5.2. The representative sections forecast

By the time the polls closed (8 pm) the results of the exit poll could be made public. The
interviewers located at the selected representative stations were then instructed to attend the
scrutiny and to phone twice to the analysis center. They first transmitted the result of the first
200 counted votes, and then the final result.

The analysis of these data is much simpler than that of those from the exit poll. Indeed,
we do not have here any covariates, nor any need for them, for these data do not have any
non-response problems.

The results from each representative section were treated as a random sample from a multi-
nomial model with a parameter vector describing the vote distribution within that section. Again,
a hierarchical argument was invoked to treat the logit transformation of those parameters as a
normal random sample centered in the logit transformation of a parameter vector describing the
vote distribution in the province.

Numerical integration was then used to produce the reference posterior distribution of the
province vote distribution and the implied reference posterior distribution on the seat allocation
within that province. The simulations from the three provinces were then combined to produce
a global forecast.

In the many elections we have tried, the technique just described produced very accurate
forecasts of the final results about one hour after the stations closed. Figure 2 is a reproduction of
the actual forecast made at 22h52 of May 28th, 1995, which was based on the 94 representative
stations (from a total of 100) that had been received before we switched to the model which
used the final returns.
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Elecciones Autonómicas 1995
Comunidad Valenciana

Datos históricos relevantes

Autonómicas 1991 PP PSOE EU UV UPV Otr

% votos 28.1 43.2 7.6 10.4 3.7 7.1
Escaños (89) 31 45 6 7 0 0

Datos procedentes del escrutinio de 94 mesas escogidas
Proyección a las 22 horas 52 min

PP PSOE EU UV UPV Otr

% votos válidos 43.0 33.4 12.4 7.2 2.8 1.1
Desviaciones 0.8 0.8 0.9 0.4 0.8 0.3
Escaños (89) 42 32 10 5 0 0

0.20 42 32 10 5 0 0
0.13 42 31 11 5 0 0
0.11 41 32 11 5 0 0
0.09 41 33 10 5 0 0
0.08 43 31 10 5 0 0
0.08 42 33 9 5 0 0
0.07 43 32 9 5 0 0
0.03 41 31 12 5 0 0
0.03 40 33 11 5 0 0
0.02 41 34 9 5 0 0

Distribución de diputados por partidos

PP 40 41 42 43 44
0.05 0.28 0.46 0.20 0.02

PSOE 30 31 32 33 34
0.03 0.26 0.42 0.24 0.04

EU 8 9 10 11 12
0.03 0.18 0.42 0.30 0.06

UV 4 5 6
0.06 0.94 0.01

Figure 2. Actual forecast on election night, 1995

5.3. The early returns forecast

By 11 pm, the return from the electoral sections which have been more efficient at the scrutiny
started to come in through a modem line connected to the main computer where the official
results were being accumulated. Unfortunately, one could not treat the available results as
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a random sample from all electoral sections; indeed, returns from small rural communities
typically come in early, with a vote distribution which is far removed from the overall vote
distribution.

Naturally, we expected a certain geographical consistency among elections in the sense
that areas with, say, a proportionally high socialist vote in the last election will still have a
proportionally high socialist vote in the present election. Since the results of the past election
were available for each electoral section, each incoming result could be compared with the
corresponding result in the past election in order to learn about the direction and magnitude of
the swing for each party. Combining the results already known with a prediction of those yet
to come, based on an estimation of the swings, we could hope to produce accurate forecasts of
the final results.

Let rij be the proportion of the valid vote which was obtained in the last election by party i
in electoral section j of a given province. Here, i = 1, . . . , k, where k is the number of parties
considered in the analysis, and j = 1, . . . , N , where N is the number of electoral sections in the
province. For convenience, let r generically denote the k-dimensional vector which contains
the past results of a given electoral section. Similarly, let yij be the proportion of the valid vote
which party i obtains in the present election in electoral section j of the province under study. As
before, let y generically denote the k-dimensional vector which contains the incoming results
of a given electoral section.

At any given moment, only some of the y’s, say y1, . . . ,yn, 0 ≤ n ≤ N , will be known.
An estimate of the final distribution of the vote z = {z1, . . . , zk} will be given by

ẑ =
n∑

j=1

ωjyj +
N∑

j=n+1

ωjŷj,
N∑
j=1

ωj = 1, (26)

where ωj is the relative number of voters in the electoral section j, known from the census, and
the ŷj’s are estimates of the N −n unobserved y’s, to be obtained from the n observed results.

The analysis of previous election results showed that the logit transformations of the pro-
portion of the votes in consecutive elections were roughly linearly related. Moreover, within
the province, one may expect a related political behaviour, so that it seems plausible to assume
that the corresponding residuals should be exchangeable. Thus, we assumed

log

{
yij

1 − yij

}
= αi log

{
rij

1 − rij

}
+ βi + εij,

p(εij) = N(εij | 0, σi)

j = i, . . . , k, j = 1, . . . , n, (27)

and obtained the corresponding reference predictive distribution for the logit transformation of
the yij’s (Bernardo and Smith, 1994, p. 442) and hence, a reference predictive for z.

Again, numerical integration was used to obtain the corresponding predictive distribution
for the seat allocation in the province implied by the d’Hondt algorithm, and the simulations
for the three provinces combined to obtain a forecast for the State Parliament.

The performance of this model in practice, summarized in the last two blocks of Table 3,
is nearly as good as the considerably more complex model developed by Bernardo and Girón
(1992), first tested in the 1991 State elections.
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Table 3. Vote distribution and seat allocation forecasts on election day 1995

Parties PP PSOE EU UV

Exit poll 44.0±1.3 30.9±1.2 12.6±0.7 6.1±1.1
(14h29) 45 30 10 4 p = 0.05

Representative sections 43.0±0.8 33.4±0.8 12.4±0.9 7.2±0.4
(22h52) 42 32 10 5 p = 0.20

First 77% scrutinized 43.80±0.40 34.21±0.20 11.74±0.04 6.77±0.04
(23h58) 42 32 10 5 p = 0.45

First 91% scrutinized 43.47±0.32 34.28±0.17 11.69±0.02 6.96±0.03
(00h53) 42 32 10 5 p = 1.00

Final 43.3 34.2 11.6 7.0
42 32 10 5

5.4. The communication of the results

All the algorithms were programmed in Pascal with the output formatted as a TEX file which
also included information on past relevant data to make easier its political analysis. A macro
defined on a Macintosh chained the different programmes involved to capture the available data,
perform the analysis, typeset the corresponding TEX file, print the output on a laser printer and
fax a copy to the relevant authorities. The whole procedure needed about 12 minutes.

Table 3 summarizes the results obtained on May 95 election with the methods described.
The timing was about one hour later than usual, because the counting for the local elections held
on the same day was done before the counting for the State elections. Fore several forecasts,
we reproduce the means and standard deviations of the posterior distribution of the percentages
of valid vote at State level, and the mode and associated probability of the corresponding
posterior distribution of the seat allocation. These include an exit poll forecast (at 14h29, with
5,683 answers introduced), a forecast based on the final results of the 94 representative sections
received at 22h52 (when six of them were still missing), and two forecasts respectively based
on the first 77% (reached at 23h58) and the first 91% (reached at 00h53) scrutinized stations.
The final block of the table reproduces, for comparison, the official final results.

The analysis of Table 3 shows the progressive convergence of the forecasts to the final results.
Pragmatically, the important qualitative outcome of the election, namely the conservative victory,
was obvious from the very first forecast, in the early afternoon (when only about 60% of
the people had actually voted!), but nothing precise could then be said about the actual seat
distribution. The final seat allocation was already the mode of its posterior distribution with
the forecast made with representative stations, but its probability was then only 0.20. That
probability was 0.45 at midnight (with 77% of the results) and 1.00, to two decimal places,
at 1 am (with 91%), about three hours before the scrutiny was actually finished (the scrutiny
typically takes several hours to be actually completed because of bureaucratic problems always
appearing at one place or another).
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Figure 3. Reproduction of the city of Valencia output from the 1995 election book

By about 4 am, all the results were in, and have been automatically introduced into a
relational data base (4th Dimension ) which already contained the results from past elections.
An script had been programmed to produce, format, and print, a graphical display of the elections
results for each of the 442 counties in the State, including for comparison the results form the
last, 1991, State election. Figure 3 reproduces the output which corresponds to the city of
Valencia. Besides, the results where automatically aggregated to produce similar outputs for
each of the 34 geographical regions of the State, for the 3 provinces, and for the State as a whole.

While this was being printed, a program in Mathematica, using digital cartography of
the State, produced colour maps where the geographical distribution of the vote was vividly
described. Figure 4 is a black and white reproduction of a colour map of the province of Alicante,
where each county is coded as a function the two parties coming first and second in the election.
Meanwhile, the author prepared a short, introductory analysis to the election results.

Thus, at about 9 am, we had a camera-ready copy of a commercial quality, 397 pages
book which, together with a diskette containing the detailed results, was printed, bounded and,
distributed 24 hours later to the media and the relevant authorities, and immediately available
to the public at bookshops.

6. THE DAY AFTER

After the elections have been held, both the media and the politicians’ discussions often center
on the transition probabilities Φ = {ϕij} where

ϕij = Pr{a person has just voted for party i | he (she) voted for party j}, (28)

which describe the reallocation of the vote of each individual party between the present and the
past election.
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Figure 4. Reproduction of a page on electoral geography from the 1995 election book

Let N be the number of people included in either of the two electoral censuses involved.
It is desired to analyze the aggregate behaviour of all those people, including those who never
voted or only voted in one of the two elections. Let p = {p1, . . . , pk} describe the distribution
of the behaviour of the people in the present election; thus, pj is the proportion of those N
people who have just voted for party j, and pk is the proportion of those N people who did
not vote, either because they decide to abstain or because they could not vote for whatever
reason (business trip, illness, or whatever), including those who died between the two elections.
Similarly, let q = {q1, . . . , qm} be the distribution of the people’s behaviour in the previous
election, including as specific categories not only what people voted for, if they did, but also
whether they abstained in that election, or whether they were under 18 (and, hence, could not
vote) at the time that election was held.

Obviously, by the total probability theorem, the transition matrix Φ has to satisfy

pi =

m∑
j=1

ϕij qj, i = 1, . . . , k. (29)



     

J. M. Bernardo. Probing Public Opinion 19

A “global” estimation Φ̂ of the transition matrix Φ is most useful if it successfully “explains”
the transference of vote in each politically interesting area, i.e., if for each of these areas l,

pil �
m∑
j=1

ϕ̂ij qjl, j = 1, . . . ,m. (30)

The exit poll had provided us with a politically representative sample of the entire population
of, say, size n, for which

x = {NewVote, PastVote, Class}
Class = {Sex, AgeGroup, Education} (31)

had been recorded, where Class is a discrete variable whose distribution in the population, say
p(c), is precisely known from the census.

For each pair {PastVote = j, Class = c}, the x’s provide a multinomial random sample
with parameters {ϕ1jc, . . . , ϕkjc, } where ϕijc is the probability that a person in class c had just
voted party i, if he (she) voted j in the past election. The corresponding reference prior is

π(ϕjc) ∝
k∏

i=1

{
ϕ
−1/2
ijc

(
1 −

∑i

l=1
ϕljc

)−1/2
}

. (32)

Hence, for each pair (j, c) we obtain the modified Dirichlet reference posterior distribution

π(ϕjc |x1, . . . ,xn) ∝ π(ϕjc)
k∏

i=1

ϕ
nijc
ijc , (33)

where nijc is the number of citizens of type c in the exit poll survey who declared that have
just voted i and that had voted j in the past election. The global posteriors for the transition
probabilities {π(ϕ1j, . . . , ϕkj), j = 1, . . . ,m are then

π(ϕj |x1, . . . ,xn} =
∑
c

π(ϕjc |x1, . . . ,xn)p(c), (34)

where the p(c)’s are known from the census. The mean, standard deviation, and any other
interesting functions of the transition probabilities ϕij , may easily be obtained by simulation.

Equation (34) encapsulates the information about the transition probabilities provided by
the exit poll data but, once the new results p1, . . . , pk are known, equation (29) has to be exactly
satisfied. However, the (continuous) posterior distribution of the ϕij’s cannot be updated using
Bayes theorem, for this set of restrictions constitute an event of zero measure.

Deming and Stephan proposed in the forties an iterative adjustment of sampled frequency
tables when expected marginal totals are known, which preserves the association structure and
matches the marginal constraints; this is further analyzed in Bishop, Fienberg and Holland
(1975). With a simulation technique, we may repeatedly use this algorithm to obtain a posterior
sample of ϕij’s which satisfy the conditions. Specifically, to obtain a simulated sample from
each of the m conditional posterior distributions of the transition probabilities given the final
results,

π(ϕj |x1, . . . ,xn,pj), j = 1, . . . ,m, (35)
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EU PP PSOE . . . Abs Totales

EU 82327 11189 11796 . . . 41300 151242
54.4 7.4 7.8 . . . 27.3 100.0

PP 2744 422648 8215 . . . 118082 558617
0.5 75.7 1.5 . . . 21.1 100.0

PSOE 32735 85758 531739 . . . 192087 860429
3.8 10.0 61.8 . . . 22.3 100.0

UV 7304 44056 6130 . . . 57728 208126
3.5 21.2 2.9 . . . 27.7 100.0

...
...

...
...

...
...

...

Menores 10073 27046 15089 . . . 18314 75174
13.4 36.0 20.1 . . . 24.4 100.0

Totales 271606 1010702 798537 . . . 762419 3093574
8.8 32.7 25.8 . . . 24.6 100.0

11.7 43.4 34.3 . . . 100.0 —

Figure 5. Part of the transition matrix between the 1991 and the 1995 Valencia State Elections

we (i) simulated from the unrestricted conditional posteriors a set of ϕij’s, (ii) derived the
corresponding joint probabilities tij = ϕij qj ; (iii) applied the iterative algorithm to obtain a
estimate t̂ij which agrees with the marginals p and q and (iv) retransformed into the conditional
probabilities ϕ̂ij = t̂ij/qj.

The posterior mean, standard deviation, and any other interesting functions of the transition
probabilitiesϕij , given the final electoral resultsp, were then easily obtained from this simulated
sample. Finally, we used the final estimates of the transition probabilities to derive estimates of
the absolute vote transfers, obviously given by vij = N ϕ̂ij qj, where N is the total population
of the area analyzed.

Figure 5 reproduces some of the means of the posterior distribution of the transition probabil-
ities between the 1991 and the 1995 elections in the State of Valencia, which were obtained with
the methods just described. For instance, we estimated that the socialist PSOE retained 61.8%
of its 1991 vote, and lost 10.0% (85,758 votes) to the conservative PP, and 22.3% (192,087)
votes in people who did not vote.
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7. FINAL REMARKS

Due to space limitations and to the nature of this meeting, we have concentrated on the methods
we have mostly used in practice. Those have continually evolved since our first efforts at the
national elections of 1982, described in Bernardo (1984). A number of interesting research
issues have appeared however in connection with this work. A recent example (Bernardo,
1994) is the investigation of the optimal hierarchical strategy which could be used to predict
election results based on early returns; this naturally leads to Bayesian clustering algorithms
where, as one would expect from any Bayesian analysis, clearly specified preferences define
the algorithm, thus avoiding the ‘adhockeries’ which plague standard cluster analysis.
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Ley d"Hondt y elecciones catalanas 

José Miguel Bernardo es catedrático de Estadística de la Universidad de Valencia.
EL PAÍS  -  C. Valenciana - 02-11-1999  

Los apretados resultados de las recientes elecciones catalanas en las que una formación política (CiU) ha obtenido
el mayor número de escaños (56 con el 37,68% de los votos) a pesar de ser superada en votos por otra formación
política (PCS-CpC, 52 escaños con el 37,88% de los votos) ha despertado de nuevo la polémica sobre la utilización
de la Ley d"Hondt en nuestras leyes electorales y, una vez más, se ha repetido la afirmación según la cual la Ley
d"Hondt distorsiona la voluntad popular expresada por los porcentajes de votos obtenidos por cada formación
política.En esta situación es necesario reiterar que tal afirmación es manifiestamente errónea. En un sistema de
representación parlamentria es obviamente necesario asignar un número entero de escaños a cada formación
política, y la Ley d"Hondt es el mejor algoritmo conocido para repartir el número total de escaños que forman el
Parlamento de manera que cada formación política reciba un número entero de escaños aproximadamente
proporcional al porcentaje de votos válidos que ha obtenido.

Como es sabido, el algoritmo de Jefferson-d"Hondt (propuesto por Thomas Jefferson casi un siglo antes de que
Victor d"Hondt la redescubriese y popularizase), consigue esta aproximación entera mediante el uso de cocientes
sucesivos. Específicamente, si se trata de un Parlamento con N escaños disputados por p formaciones políticas
que han obtenido (n1, ...np) votos, se calcula la matriz de cocientes rij=ni/j, j=1, ... N, se seleccionan sus N
mayores elementos, y se asigna a cada formación política un número de escaños igual al número de esos N
elementos que corresponden a sus propios cocientes. En este algoritmo no hay mecanismo distorsionador alguno,
más allá de la aproximación necesaria para poder encontrar una partición entera.

Nuestra ley electoral distorsiona efectivamente la voluntad popular, pero esto no es debido al uso del algoritmo de
Jefferson-d"Hondt, sino al empleo de las provincias como circunscripciones electorales y, en menor medida, al
requisito de un porcentaje mínimo de votos válidos para obtener representación parlamentaria. Cuanto menores
sean las circunscripciones electorales, mayor será la ventaja relativa de los partidos grandes frente a los pequeños,
cualquiera que sea el algoritmo de asignación empleado. En un extremo, si cada circunscripción electoral elige un 
único diputado (como actualmente sucede en el Reino Unido), se tiene un sistema de representación mayoritario.
En el otro extremo, si se utiliza una circunscripción única (como se hace en las elecciones europeas, en las que
toda España es una circunscripción electoral) se obtiene una representación parlamentaria lo más proxima
posible a una representación proporcional perfecta.

Generalmente, las leyes electorales exigen un porcentaje mínimo de votos válidos para acceder a la representación
parlamentaria (en España es el 3% para las elecciones generales y para la mayor parte de las autonómicas, pero
sólo el 1% para las elecciones europeas). Naturalmente, este requisito constituye otro elemento distorsionador de
la pluralidad política expresada por los resultados electorales, tanto mayor cuanto mayor sea el porcentaje exigido
(en las elecciones autonómicas valencianas se sitúa en un injustificable 5%).

Unos sencillos ejercicios aritméticos con los resultados provisionales de las recientes elecciones catalanas
permiten apreciar las consecuencias políticas de los efectos distorsionadores mencionados.

Las dos primeras columnas de la Tabla 1 describen (en número de votos y en porcentajes) los resultados globales
de las elecciones en el conjunto de Cataluña. Con la ley electoral vigente (circunscripciones electorales
provinciales y mínimo del 3%), la asignación de escaños da lugar a la columna I, en la que CiU, con 56 escaños,
alcanza el mayor número de diputados. El uso de toda Cataluña como circunscripción única, manteniendo el
requisito del 3%, da lugar a la columna II, en la que el empate técnico entre CiU y PSC-CpC se traduce en 55
escaños cada uno. El uso de toda Cataluña como circunscripción única, pero con requisito mínimo de sólo el 1%
da lugar a la columna III, en la que la ligera ventaja en votos del PSC-CpC sobre CiU se traduce en un escaño más
para la formación socialista. Este mismo resultado es el que se obtiene con estos datos si no se exige requisito
mínimo alguno.

En la Tabla 2 se reproducen los porcentajes de escaños a que corresponden. Como podía esperarse, solamente la
tercera opción representa una aproximación no distorsionada de los resultados electorales. En particular, CiU,
con el 37,68% de los votos hubiera obtenido el 38,52% de los escaños (y no el 41,48% que le otorga la ley
electoral vigente) mientras el PSC-CpC con un 37,88% de los votos hubiera obtenido el 39,26% de los escaños (y
no el 38,52% que otorga la ley electoral vigente); EU, con el 1,43% de los votos hubiera obtenido el 1,48% de los
escaños (en lugar de quedar sin representación parlamentaria). La lista más votada, el PSC-CpC habría tenido
también la mayor representación parlamentaria y habría sido requerida para formar Gobierno.
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Summary

For any probability model M ≡ {p(x |θ,ω),θ ∈ Θ,ω ∈ Ω} assumed to describe the proba-
bilistic behaviour of data x ∈ X, it is argued that testing whether or not the available data are
compatible with the hypothesis H0 ≡ {θ = θ0} is best considered as a formal decision prob-
lem on whether to use (a0), or not to use (a1), the simpler probability model (or null model)
M0 ≡ {p(x |θ0,ω),ω ∈ Ω}, where the loss difference L(a0,θ,ω)− L(a1,θ,ω) is proportional to the
amount of information δ(θ0,θ,ω) which would be lost if the simplified model M0 were used as
a proxy for the assumed model M . For any prior distribution π(θ,ω), the appropriate norma-
tive solution is obtained by rejecting the null model M0 whenever the corresponding posterior
expectation

∫ ∫
δ(θ0,θ,ω)π(θ,ω |x) dθ dω is sufficiently large.

Specification of a subjective prior is always difficult, and often polemical, in scientific com-
munication. Information theory may be used to specify a prior, the reference prior, which only
depends on the assumed model M , and mathematically describes a situation where no prior
information is available about the quantity of interest. The reference posterior expectation,
d(θ0,x) =

∫
δ π(δ |x) dδ, of the amount of information δ(θ0,θ,ω) which could be lost if the null

model were used, provides an attractive non-negative test function, the intrinsic statistic, which is
invariant under reparametrization.

The intrinsic statistic d(θ0,x) is measured in units of information, and it is easily calibrated
(for any sample size and any dimensionality) in terms of some average log-likelihood ratios. The
corresponding Bayes decision rule, the Bayesian reference criterion (BRC), indicates that the null
model M0 should only be rejected if the posterior expected loss of information from using the
simplified modelM0 is too large or, equivalently, if the associated expected average log-likelihood
ratio is large enough.

The BRC criterion provides a general reference Bayesian solution to hypothesis testing
which does not assume a probability mass concentrated on M0 and, hence, it is immune to
Lindley’s paradox. The theory is illustrated within the context of multivariate normal data, where
it is shown to avoid Rao’s paradox on the inconsistency between univariate and multivariate
frequentist hypothesis testing.

Keywords: Amount of Information; Decision Theory; Lindley’s Paradox; Loss function; Model
Criticism; Model Choice; Precise Hypothesis Testing; Rao’s Paradox; Reference Analysis;
Reference Prior.
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1. Introduction

1.1. Model Choice and Hypothesis Testing

Hypothesis testing has been subject to polemic since its early formulation by Neyman and Pear-
son in the 1930s. This is mainly due to the fact that its standard formulation often constitutes
a serious oversimplification of the problem intended to solve. Indeed, many of the problems
which traditionally have been formulated in terms of hypothesis testing are really complex de-
cision problems on model choice, whose appropriate solution naturally depends on the structure
of the problem. Some of these important structural elements are the motivation to choose a
particular model (e.g., simplification or prediction), the class of models considered (say a finite
set of alternatives or a class of nested models), and the available prior information (say a sharp
prior concentrated on a particular model or a relatively diffuse prior).

In the vast literature of model choice, reference is often made to the “true” probability
model. Assuming the existence of a “true” model would be appropriate whenever one knew for
sure that the real world mechanism which has generated the available data was one of a specified
class. This would indeed be the case if data had been generated by computer simulation, but
beyond such controlled situations it is difficult to accept the existence of a “true” model in a
literal sense. There are many situations however where one is prepared to proceed “as if” such a
true model existed, and furthermore belonged to some specified class of models. Naturally, any
further conclusions will then be conditional on this (often strong) assumption being reasonable
in the situation considered.

The natural mathematical framework for a systematic treatment of model choice is decision
theory. One has to specify the range of models which one is willing to consider, to decide
whether or not it may be assumed that this range includes the true model, to specify probability
distributions describing prior information on all unknown elements in the problem, and to specify
a loss function measuring the eventual consequences of each model choice. The best alternative
within the range of models considered is then that model which minimizes the corresponding
expected posterior loss. Bernardo and Smith (1994, Ch. 6) provide a detailed description of
many of these options. In this paper attention focuses on one of the simplest problems of model
choice, namely hypothesis testing, where a (typically large) modelM is tentatively accepted, and
it is desired to test whether or not available data are compatible with a particular submodelM0.
Note that this formulation includes most of the problems traditionally considered under the
heading of hypothesis testing in the frequentist statistical literature.

1.2. Notation

It is assumed that probability distributions may be described through their probability mass or
probability density functions, and no distinction is generally made between a random quantity
and the particular values that it may take. Roman fonts are used for observable random quantities
(typically data) and for known constants, while Greek fonts are used for unobservable random
quantities (typically parameters). Bold face is used to denote row vectors, and x′ to denote the
transpose of the vectorx. Lower case is used for variables and upper case for their domains. The
standard mathematical convention of referring to functions, say f and g of x ∈ X , respectively,
by f(x) and g(x), will often be used. In particular, p(x |C) and p(y |C) will respectively
represent general probability densities of the observable random vectors x ∈ X and y ∈ Y
under conditions C, without any suggestion that the random vectors x and y have the same
distribution. Similarly, π(θ |C) and π(ω |C) will respectively represent general probability
densities of the unobservable parameter vectors θ ∈ Θ and ω ∈ Ω under conditions C. Thus,
p(x |C) ≥ 0,

∫
X p(x |C) dx = 1, and π(θ |C) ≥ 0,

∫
Θ π(θ |C) dθ = 1. If the random
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vectors are discrete, these functions are probability mass functions, and integrals over their
values become sums. E[x |C] and E[θ |C] are respectively used to denote the expected values
of x and θ under conditions C. Finally, Pr(θ ∈ A |x, C) =

∫
A p(θ |x, C) dθ denotes the

probability that the parameter θ belongs to A, given data x and conditions C.

Specific density functions are denoted by appropriate names. Thus, if x is a univariate
random quantity having a Normal distribution with mean µ and variance σ2, its probability
density function will be denoted N(x |µ, σ2); if θ has a Beta distribution with parameters a
and b, its density function will be denoted Be(θ | a, b).

A probability model for some data x ∈ X is defined as a family of probability distributions
for x indexed by some parameter. Whenever a model has to be fully specified, the notation
{p(x |φ), φ ∈ Φ, x ∈ X} is used, and it is assumed that p(x |φ) is a probability density
function (or a probability mass function) so that p(x |φ) ≥ 0, and

∫
X p(x |φ) dx = 1 for

all φ ∈ Φ. The parameter φ will generally be assumed to be a vector φ = (φ1, . . . , φk) of
finite dimension k ≥ 1, so that Φ ⊂ 
k. Often, the parameter vector φ will be written in
the form φ = {θ,ω}, where θ is considered to be the vector of interest and ω a vector of
nuisance parameters. The sets X and Φ will be referred to, respectively, as the sample space
and the parameter space. Occasionally, if there is no danger of confusion, reference is made
to ‘model’ {p(x |φ),φ ∈ Φ}, or even to ‘model’ p(x |φ), without recalling the sample and
the parameter spaces. In non-regular problems the sample space X depends on the parameter
value φ; this will explicitly be indicated by writing X = X(φ). Considered as a function of
the parameter φ, the probability density (or probability mass) p(x |φ) will be referred to as the
likelihood function of φ given x. Whenever this exists, a maximum of the likelihood function
(maximum likelihood estimate or mle) will be denoted by φ̂ = φ̂(x).

The complete set of available data is represented by x. In many examples this will be a
random sample x = {x1, . . . , xn} from a model of the form {p(x |φ), x ∈ 
,φ ∈ Φ} so that
the likelihood function will be of the form p(x |φ) =

∏n
j=1 p(xj |φ) and the sample space will

be X ⊂ 
n, but it will not be assumed that this has to be the case. The notation t = t(x),
t ∈ T , is used to refer to a general function of the data; often, but not necessarily, this will be a
sufficient statistic.

1.3. Simple Model Choice

The simplest example of a model choice problem (and one which centers most discussions on
model choice and model comparison) is one where (i) the range of models considered is a finite
classM = {M1, . . . ,Mm}, ofm fully specified models

Mi ≡ {p(x |φi), x ∈ X}, i = 1, . . . ,m (1)

(ii) it is assumed that that the ‘true’ model is a member Mt ≡ {p(x |φt),x ∈ X} from that
class, and (iii) the loss function is the simple step function{

�(at,φt) = 0,
�(ai,φt) = c > 0, i �= t, (2)

where ai denotes the decision to act as if the true model was Mi. In this simplistic situation,
it is immediate to verify that the optimal model choice is that which maximizes the posterior
probability, π(φi |x) ∝ p(x |φi)π(φi). Moreover, an intuitive measure of paired comparison
of plausibility between any two of the modelsMi andMj is provided by the ratio of the posterior
probabilities π(φi |x)/π(φj |x). If, in particular, allmmodels are judged to be equally likely
a priori, so that π(φi) = 1/m, for all i, then the optimal model is that which maximizes the
likelihood, p(x |φi), and the ratio of posterior probabilities reduces to the corresponding Bayes
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factorBij = p(x |φi)/p(x |φj) which, in this simple case (with no nuisance parameters), it is
also the corresponding likelihood ratio.

The natural extension of this scenario to a continuous setting considers a non-countable
class of modelsM = {Mφ,φ ∈ Φ ⊂ 
k},

Mφ ≡ p(x |φ); with p(x |φ) > 0,
∫
X
p(x |φ) dx = 1, (3)

an absolutely continuous and strictly positive prior, represented by its density p(φ) > 0, and a
simple step loss function �(aφ,φ) such that{

�(aφ,φt) = 0, φ ∈ Bε(φt)
�(aφ,φt) = c > 0, φ /∈ Bε(φt),

(4)

where aφ denotes the decision to act as if the true model was Mφ, and Bε(φt) is a radius ε
neighbourhood of φt. In this case, it is easily shown that, as ε decreases, the optimal model
choice converges to the model labelled by the mode of the corresponding posterior distribu-
tion π(φ |x) ∝ p(x |φ)π(φ). Note that with this formulation, which strictly parallels the
conventional formulation for model choice in the finite case, the problem of model choice is
mathematically equivalent to the problem of point estimation with a zero-one loss function.

1.4. Hypothesis Testing

Within the context of an accepted, possibly very wide class of models,M = {Mφ,φ ∈ Φ}, a
subsetM0 = {Mφ, φ ∈ Φ0 ⊂ Φ} of the classM, where Φ0 may possibly consist of a single
valueφ0, is sometimes suggested in the course of the investigation as deserving special attention.
This may either be because restricting φ to Φ0 would greatly simplify the model, or because
there are additional (context specific) arguments suggesting that φ ∈ Φ0. The conventional
formulation of a hypothesis testing problem is stated within this framework. Thus, given data
x ∈ X which are assumed to have been generated by p(x |φ), for some φ ∈ Φ, a procedure
is required to advise on whether or not if may safely be assumed that φ ∈ Φ0. In conventional
language, a procedure is desired to test the null hypothesis H0 ≡ {φ ∈ Φ0}. The particular
case where Φ0 contains a single valueφ0, so that Φ0 = {φ0}, is further referred to as a problem
of precise hypothesis testing.

The standard frequentist approach to precise hypothesis testing requires to propose some
one-dimensional test statistic t = t(x) ∈ T ⊂ 
, where large values of t cast doubt onH0. The
p-value (or observed significance level) associated to some observed data x0 ∈ X is then the
probability, conditional on the null hypothesis being true, of observing data as or more extreme
than the data actually observed, that is,

p = Pr[t ≥ t(x0) |φ = φ0] =
∫
{x; t(x)≥t(x0)}

p(x |φ0) dx (5)

Small values of the p-value are considered to be evidence against H0, with the values 0.05
and 0.01 typically used as conventional cut-off points.

There are many well-known criticisms to this common procedure, some of which are briefly
reviewed below. For further discussion see Jeffreys (1961), Edwards, Lindman and Savage
(1963), Rao (1966), Lindley (1972), Good (1983), Berger and Delampady (1987), Berger and
Sellke (1987), Matthews (2001), and references therein.

• Arbitrary choice of the test statistic. There is no generally accepted theory on the selection
of the appropriate test statistic, and different choices may well lead to incompatible results.
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• Not a measure of evidence. Observed significance levels are not direct measures of evidence.
Although most users would like it to be true, in precise hypothesis testing there is no
mathematical relation between the p-value and Pr[H0 |x0], the probability that the null is
true given the evidence.
• Arbitrary cut-off points. Conventional cut-off points for p-values (as the ubiquitous 0.05)

are arbitrary, and ignore power. Moreover, despite frequent warnings in the literature, they
are typically chosen with no regard for either the dimensionality of the problem or the
sample size (possibly due to the fact that there is no accepted methodology to perform that
adjustment).
• Exaggerate significance. Different arguments have been used to suggest that the conven-

tional use of p-values exaggerate significance. Indeed, with common sample sizes, a 0.05
p-value is typically better seen as an indication that more data are needed than as firm
evidence against the null.
• Improper conditioning. Observed significance levels are not based on the observed evidence,

namely t(x) = t(x0), but on the (less than obviously relevant) event {t(x) ≥ t(x0)} so
that, to quote Jeffreys (1980, p. 453), the null hypothesis may be rejected by not predicting
something that has not happened.
• Contradictions. Using fixed cut-off points for p-values easily leads to contradiction. For

instance, in a multivariate setting, one may simultaneously reject all components φi = φi0
and yet accept φ = φ0 (Rao’s paradox).

• No general procedure. The procedure is not directly applicable to general hypothesis
testing problems. Indeed, the p-value is a function of the sampling distribution of the test
statistic under the null, and this is only well defined in the case of precise hypothesis testing.
Extensions to the general case,M0 = {Mφ, φ ∈ Φ0}, where Φ0 contains more than one
point, are less than obvious.

Hypothesis testing has been formulated as a decision problem. No wonder therefore that
Bayesian approaches to hypothesis testing are best described within the unifying framework of
decision theory. Those are reviewed below.

2. Hypothesis Testing as a Decision Problem

2.1. General Structure

Consider the probability model M ≡ {p(x |θ,ω),θ ∈ Θ,ω ∈ Ω} which is currently
assumed to provide an appropriate description of the probabilistic behaviour of observable data
x ∈ X in terms of some vector of interest θ ∈ Θ and some nuisance parameter vector ω ∈ Ω.
From a Bayesian viewpoint, the complete final outcome of a problem of inference about any
unknown quantity is the appropriate posterior distribution. Thus, given datax and a (joint) prior
distribution π(θ,ω), all that can be said about θ is encapsulated in the corresponding posterior
distribution

π(θ |x) =
∫

Ω
π(θ,ω |x) dω, π(θ,ω |x) ∝ p(x |θ,ω)π(θ,ω). (6)

In particular, the (marginal) posterior distribution of θ immediately conveys information on
those values of the vector of interest which (given the assumed model) may be taken to be
compatible with the observed data x, namely, those with a relatively high probability density.
In some occasions, a particular value θ = θ0 ∈ Θ of the quantity of interest is suggested in the
course of the investigation as deserving special consideration, either because assuming θ = θ0
would greatly simplify the model, or because there are additional (context specific) arguments
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suggesting that θ = θ0. Intuitively, the (null) hypothesis H0 ≡ {θ = θ0} should be judged to
be compatible with the observed data x if θ0 has a relatively high posterior density; however,
a more precise conclusion is often required, and this may be derived from a decision-oriented
approach.

Formally, testing the hypothesis H0 ≡ {θ = θ0} is defined as a decision problem where
the action space has only two elements, namely to accept (a0) or to reject (a1) the use of the
restricted model M0 ≡ {p(x |θ0,ω), ω ∈ Ω} as a convenient proxy for the assumed model
M ≡ {p(x |θ,ω), θ ∈ Θ, ω ∈ Ω}. To solve this decision problem, it is necessary to specify an
appropriate loss function, {�[ai, (θ,ω)], i = 0, 1}, measuring the consequences of accepting
or rejecting H0 as a function of the actual values (θ,ω) of the parameters. Notice that this
requires the statement of an alternative action a1 to accepting H0; this is only to be expected,
for an action is taken not because it is good, but because it is better than anything else that has
been imagined.

Given data x, the optimal action will be to rejectH0 if (and only if) the expected posterior
loss of accepting,

∫
Θ

∫
Ω �[a0, (θ,ω)]π(θ,ω |x) dθdω, is larger than the expected posterior loss

of rejecting,
∫
Θ

∫
Ω �[a1, (θ,ω)]π(θ,ω |x) dθdω, i.e., iff∫
Θ

∫
Ω
{�[a0, (θ,ω)]− �[a1, (θ,ω)]}π(θ,ω |x) dθdω > 0. (7)

Therefore, only the loss difference

∆�(H0,θ,ω) = �[a0, (θ,ω)]− �[a1, (θ,ω)], (8)
which measures the advantage of rejecting H0 as a function of {θ,ω}, has to be specified.
Notice that no constraint has been imposed in the preceding formulation. It follows that any
(generalized) Bayes solution to the decision problem posed (and hence any admissible solution,
see e.g., Berger, 1985, Ch. 8) must be of the form

Reject H0 iff
∫

Θ

∫
Ω

∆�(H0,θ,ω)π(θ,ω |x) dθdω > 0, (9)

for some loss difference function ∆�(H0,θ,ω), and some (possibly improper) prior π(θ,ω).
Thus, as common sense dictates, the hypothesis H0 should be rejected whenever the expected
advantage of rejecting H0 is positive. In some examples, the loss difference function does not
depend on the nuisance parameter vector ω; if this is the case, the decision criterion obviously
simplifies to rejecting H0 iff

∫
Θ ∆�(H0,θ)π(θ |x) dθ > 0.

A crucial element in the specification of the loss function is a description of what is precisely
meant by rejecting H0. By assumption, a0 means to act as if model M0 were true, i.e., as if
θ = θ0, but there are at least two options for the alternative action a1. This might mean the
negation of H0, that is to act as if θ �= θ0, or it might rather mean to reject the simplification
to M0 implied by θ = θ0, and to keep the unrestricted model M (with θ ∈ Θ), which is
acceptable by assumption. Both of these options have been analyzed in the literature, although
it may be argued that the problems of scientific data analysis where precise hypothesis testing
procedures are typically used are better described by the second alternative. Indeed, this is the
situation in two frequent scenarios: (i) an established model, identified by M0, is embedded
into a more general model M (so that M0 ⊂ M ), constructed to include possibly promising
departures fromM0, and it is required to verify whether or not the extended modelM provides
a significant improvement in the description of the behaviour of the available data; or, (ii) a
large model M is accepted, and it is required to verify whether or not the simpler model M0
may be used as a sufficiently accurate approximation.



J. M. Bernardo and R. Rueda. Bayesian Hypothesis Testing 7

2.2. Bayes Factors

The Bayes factor approach to hypothesis testing is a particular case of the decision structure
outlined above; it is obtained when the alternative action a1 is taken to be to act as if θ �= θ0,
and the difference loss function is taken to be a simplistic zero-one function. Indeed, if the
advantage ∆�(H0,θ,ω) of rejecting H0 is of the form

∆�(H0,θ,ω) = ∆�(H0,θ) =
{−1 if θ = θ0

+1 if θ �= θ0, (10)

then the corresponding decision criterion is

Reject H0 iff Pr(θ = θ0 |x) < Pr(θ �= θ0 |x). (11)
If the prior distribution is such that Pr(θ = θ0) = Pr(θ �= θ0) = 1/2, and {π(ω |θ0), π(ω |θ)}
respectively denote the conditional prior distributions of ω, when θ = θ0 and when θ �= θ0,
then the criterion becomes

Reject H0 iff B01{x, π(ω |θ0), π(ω |θ)} =

∫
Ω p(x |θ0,ω)π(ω |θ0) dω∫

Θ

∫
Ω p(x |θ,ω)π(ω |θ) dθdω < 1 (12)

where B01{x, π(ω |θ0), π(ω |θ)} is the Bayes factor (or integrated likelihood ratio) in favour
of H0. Notice that the Bayes factor B01 crucially depends on the conditional priors π(ω |θ0)
and π(ω |θ), which must typically be proper for the Bayes factor to be well-defined.

It is important to realize that this formulation requires that Pr(θ = θ0) > 0, so that the
hypothesisH0 must have a strictly positive prior probability. If θ is a continuous parameter, this
forces the use of a non-regular (not absolutely continuous) ‘sharp’ prior concentrating a positive
probability mass on θ0. One unappealing consequence of this non-regular prior structure, noted
by Lindley (1957) and generally known as Lindley’s paradox, is that for any fixed value of the
pertinent test statistic, the Bayes factor typically increases as

√
n with the sample size; hence,

with large samples, “evidence” in favor of H0 may be overwhelming with data sets which are
both extremely implausible under H0 and quite likely under alternative θ values, such as (say)
the mle θ̂. For further discussion of this polemical issue see Bernardo (1980), Shafer (1982),
Berger and Delampady (1987), Casella and Berger (1987), Robert (1993), Bernardo (1999),
and discussions therein.

The Bayes factor approach to hypothesis testing in a continuous parameter setting deals
with situations of concentrated prior probability; it assumes important prior knowledge about
the value of the vector of interest θ (described by a prior sharply spiked on θ0) and analyzes how
such very strong prior beliefs about the value of θ should be modified by the data. Hence, Bayes
factors should not be used unless this strong prior formulation is an appropriate assumption. In
particular, Bayes factors should not be used to test the compatibility of the data with H0, for
they inextricably combine what data have to say with (typically subjective) strong beliefs about
the value of θ.

2.3. Continuous Loss Functions

It is often natural to assume that the loss difference ∆�(H0,θ,ω), a conditional measure of the
loss suffered if p(x |θ0,ω) were used as a proxy for p(x |θ,ω), has to be some continuous
function of the ‘discrepancy’ between θ and θ0. Moreover, one would expect ∆�(H0,θ0,ω) to
be negative, for there must be some positive advantage, say �∗ > 0, in accepting the null when
it is true. A simple example is the quadratic loss

∆�(H0,θ,ω) = ∆�(θ0,θ) = (θ − θ0)2 − �∗, �∗ > 0, (13)
Notice that continuous difference loss functions do not require the use of non-regular priors. As
a consequence, their use does not force the assumption of strong prior beliefs and, in particular,
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they may be used with improper priors. However, (i) there are many possible choices for
continuous difference loss functions; (ii) the resulting criteria are typically not invariant under
one-to-one reparametrization of the quantity of interest; and (iii) their use requires some form
of calibration, that is, an appropriate choice of the utility constant �∗, which is often context
dependent.

In the next section we justify the choice of a particular continuous invariant difference loss
function, the intrinsic discrepancy. This is combined with reference analysis to propose an
attractive Bayesian solution to the problem of hypothesis testing, defined as the problem of
deciding whether or not available data are statistically compatible with the hypothesis that the
parameters of the model belong to some subset of the parameter space. The proposed solution
sharpens a procedure suggested by Bernardo (1999) to make it applicable to non-regular models,
and extends previous results to multivariate probability models. For earlier, related references,
see Bernardo (1982, 1985), Bernardo and Bayarri (1985), Ferrándiz (1985), Gutiérrez-Peña
(1992), and Rueda (1992). The argument lies entirely within a Bayesian decision-theoretical
framework (in that the proposed solution is obtained by minimizing a posterior expected loss),
and it is objective (in the precise sense that it only uses an “objective” prior, a prior uniquely
defined in terms of the assumed model and the quantity of interest).

3. The Bayesian Reference Criterion

Let model M ≡ {p(x |θ,ω), θ ∈ Θ, ω ∈ Ω} be a currently accepted description of the
probabilistic behaviour of data x ∈ X , let a0 be the decision to work under the restricted
modelM0 ≡ {p(x |θ0,ω),ω ∈ Ω}, and let a1 be the decision to keep the general, unrestricted
model M . In this situation, the loss advantage ∆�(H0,θ,ω) of rejecting H0 as a function
of (θ,ω) may safely be assumed to have the form

∆�(H0,θ,ω) = δ(θ0,θ,ω)− d∗, d∗ > 0, (14)
where

(i) the function δ(θ0,θ,ω) is some non-negative measure of the discrepancy between the
assumed model p(x |θ,ω) and its closest approximation within {p(x |θ0,ω),ω ∈ Ω},
such that δ(θ0,θ0,ω) = 0, and

(ii) the constant d∗ > 0 is a context dependent utility value which measures the (necessarily
positive) advantage of being able to work with the simpler model when it is true.

Choices of both δ(θ0,θ,ω) and d∗ which might be appropriate for general use will now be
discussed.

3.1. The Intrinsic Discrepancy

Conventional loss functions typically focus on the “distance” between the true and the null
values of the quantity of interest, rather than on the “distance” between the models they label
and, typically, they are not invariant under reparametrization. Intrinsic losses however (see e.g.,
Robert, 1996) directly focus on how different the true model is from the null model, and they
typically produce invariant solutions. We now introduce a new, particularly attractive, intrinsic
loss function, the intrinsic discrepancy loss.

The basic idea is to define the discrepancy between two probability densities p1(x) and
p2(x) as min{k(p1 | p2), k(p2 | p1)}, where

k(p2 | p1) =
∫
X
p1(x) log

p1(x)
p2(x)

dx (15)
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is the directed logarithmic divergence (Kullback and Leibler, 1951; Kullback, 1959) of p2(x)
from p1(x). The discrepancy from a point to a set is further defined as the discrepancy from
the point to its closest element in the set. The introduction of the minimum makes it possible to
define a symmetric discrepancy between probability densities which is finite with strictly nested
supports, a crucial property if a general theory (applicable to non-regular models) is required.

Definition 1. Intrinsic Discrepancies. The intrinsic discrepancy δ(p1, p2) between two prob-
ability densities p1(x) and p2(x) for the random quantity x ∈ X is

δ{p1(x), p2(x)} = min
{∫

X
p1(x) log

p1(x)
p2(x)

dx,

∫
X
p2(x) log

p2(x)
p1(x)

dx
}

The intrinsic discrepancy between two families of probability densities for the random quan-
tity x ∈ X ,M1 ≡ {p1(x |φ),φ ∈ Φ} andM2 ≡ {p2(x |ψ),ψ ∈ Ψ}, is given by

δ(M1,M2) = min
φ∈Φ,ψ∈Ψ

δ{p1(x |φ), p2(x |ψ)}
%

It immediately follows for Definition 1 that δ{p1(x), p2(x)} provides the minimum ex-
pected log-density ratio log[pi(x)/pj(x)] in favour of the true density that one would obtain if
data x ∈ X were sampled from either p1(x) or p2(x). In particular, if p1(x) and p2(x) are
fully specified alternative probability models for data x ∈ X , and it is assumed that one of them
is true, then δ{p1(x), p2(x)} is the minimum expected log-likelihood ratio for the true model.

Intrinsic discrepancies have a number of attractive properties. Some are directly inherited
from the directed logarithmic divergence. Indeed,

(i) The intrinsic discrepancy δ{p1(x), p2(x)} between p1(x) and p2(x) is non-negative and
vanishes iff p1(x) = p2(x) almost everywhere.

(ii) The intrinsic discrepancy δ{p1(x), p2(x)} is invariant under one-to-one transformations
y = y(x) of the random quantity x.

(iii) The intrinsic discrepancy is additive in the sense that if the available data x consist of a
random sample x = {x1, . . . , xn} from either p1(x) or p2(x), then δ{p1(x), p2(x)} =
n δ{p1(x), p2(x)}.

(iv) If the densities p1(x) = p(x |φ1) and p2(x) = p(x |φ2) are two members of a parametric
family p(x |φ), then δ{p(x |φ1), p(x |φ2)} = δ{φ1,φ2} is invariant under one-to-one
transformations for the parameter, so that for any such transformation ψi = ψ(φi), one
has δ{p(x |ψ1), p(x |ψ2)} = δ{ψ(φ1),ψ(φ2)} = δ{φ1,φ2}.

(v) The intrinsic discrepancy between p1(x) and p2(x) measures the minimum amount of
information (in natural information units, nits) that one observationx ∈ X may be expected
to provide in order to discriminate between p1(x) and p2(x) (Kullback, 1959).

Moreover, the intrinsic discrepancy has two further important properties which the directed
logarithmic divergence does not have:

(vi) The intrinsic discrepancy is symmetric so that δ{p1(x), p2(x)} = δ{p2(x), p1(x)}.
(vii) If the two densities have strictly nested supports, so that p1(x) > 0 iff x ∈ X1, p2(x) > 0

iff x ∈ X2, and either X1 ⊂ X2 or X2 ⊂ X1, then the intrinsic discrepancy is still
typically finite. More specifically, the intrinsic discrepancy then reduces to one of the
directed logarithmic divergences while the other diverges, so that δ{p1, p2} = k(p1 | p2)
when X2 ⊂ X1, and δ{p1, p2} = k(p2 | p1) when X1 ⊂ X2.
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Example 1. Discrepancy between a Binomial distribution and its Poisson approximation.
Let p1(x) be a binomial distribution Bi(x |n, θ), and let p2(x) be its Poisson approximation
Pn(x | nθ). Since X1 ⊂ X2, δ(p1, p2) = k(p2 | p1); thus,

δ{p1(x), p2(x)} = δ(n, θ) =
n∑
x=0

Bi(x |n, θ) log
Bi(x |n, θ)
Pn(x |nθ)

.

0.05 0.1 0.15 0.2

0.005

0.01

0.015

0.02
δ(n, θ) = δ{Bi(x |n, θ),Pn(x |nθ)} n = 1

n = 2

n = 5
n = 1000

θ

Figure 1. Intrinsic discrepancy between a Binomial distribution Bi(x |n, θ) and a Poisson distribution
Pn(x |nθ) as a function of θ, for n = 1, 2, 5 and 1000.

The resulting discrepancy, δ(n, θ) is plotted in Figure 1 as a function of θ for several values
of n. As one might expect, the discrepancy converges to zero as θ decreases and as n increases,
but it is apparent from the graph that the important condition for the approximation to work is
that θ has to be small. %

The definition of the intrinsic divergence suggests an interesting new form of convergence
for probability distributions:

Definition 2. Intrinsic Convergence. A sequence of probability distributions represented by
their density functions {pi(x)}∞i=1 is said to converge intrinsically to a probability distribution
with density p(x) whenever limi→∞ δ(pi, p) = 0, that is, whenever the intrinsic discrepancy
between pi(x) and p(x) converges to zero. %

Example 2. Intrinsic convergence of Student densities to a Normal density. The intrinsic
discrepancy between a standard Normal and a standard Student with α degrees of freedom is
δ(α) = δ{St(x | 0, 1, α),N(x | 0, 1)}, i.e.,

min
{∫ ∞
−∞

St(x | 0, 1, α) log
St(x | 0, 1, α)

N(x | 0, 1)
dx,

∫ ∞
−∞

N(x | 0, 1) log
N(x | 0, 1)

St(x | 0, 1, α)
dx

}
;

The second integral may be shown to be always smaller than the first, and to yield an analytical
result (in terms of the Hypergeometric and Beta functions) which, for large α values, may be
approximated by Stirling to obtain

δ(α) =
∫ ∞
−∞

N(x | 0, 1) log
N(x | 0, 1)

St(x | 0, 1, α)
dx =

1
(1 + α)2

+ o(α−2) ,
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a function which rapidly converges to zero. Thus, a sequence of standard Student densities with
increasing degrees of freedom intrinsically converges to a standard normal density. %

In this paper, intrinsic discrepancies are basically used to measure the “distance” between
alternative model assumptions about datax ∈ X . Thus, δ{p1(x |φ), p2(x |ψ)} is a symmetric
measure (in natural information units, nits) of how different the probability densities p1(x |φ)
and p2(x |ψ) are from each other as a function of φ and ψ. Since, for any given data x ∈ X ,
p1(x |φ) and p2(x |ψ) are the respective likelihood functions, it follows from Definition 1 that
δ{p1(x |φ), p2(x |ψ)} = δ(φ,ψ) may immediately be interpreted as the minimum expected
log-likelihood ratio in favour of the true model, assuming that one of the two models is true.
Indeed, if p1(x |φ0) = p2(x |ψ0) almost everywhere (and hence the models p1(x |φ0) and
p2(x |ψ0) are indistinguishable), then δ{φ0,ψ0)} = 0. In general, if either p1(x |φ0) or
p2(x |ψ0) is correct, then an intrinsic discrepancy δ(φ0,ψ0) = d implies an average log-
likelihood ratio for the true model of at least d, i.e., minimum likelihood ratios for the true
model of about ed. If δ{φ0,ψ0)} = 5, e5 ≈ 150, so that data x ∈ X should then be expected
to provide strong evidence to discriminate between p1(x |φ0) and p2(x |ψ0). Similarly, if
δ{φ0,ψ0)} = 2.5, e2.5 ≈ 12, so that data x ∈ X should then only be expected to provide mild
evidence to discriminate between p1(x |φ0) and p2(x |ψ0).

Definition 3. Intrinsic Discrepancy Loss. The intrinsic discrepancy loss δ(θ0,θ,ω) from
replacing the probability model M = {p(x |θ,ω), θ ∈ Θ, ω ∈ Ω, x ∈ X} by its restriction
with θ = θ0, M0 = {p(x |θ0,ω), ω ∈ Ω, x ∈ X} is the intrinsic discrepancy between the
probability density p(x |θ,ω) and the family of probability densities {p(x |θ0,ω), ω ∈ Ω},
that is

δ(θ0,θ,ω) = min
ω0∈Ω

δ{p(x |θ,ω), p(x |θ0,ω0)}
%

The intrinsic discrepancy δ(θ0,θ,ω) between p(x |θ,ω) and M0 is the intrinsic discrep-
ancy between the assumed probability density p(x |θ,ω) and its closest approximation with
θ = θ0. Notice that δ(θ0,θ,ω) is invariant under reparametrization of either θ orω. Moreover,
if t = t(x) is a sufficient statistic for modelM , then∫

X
p(x |θi,ω) log

p(x |θi,ω)
p(x |θj,ωj)

dx =
∫
T
p(t |θi,ω) log

p(t |θi,ω)
p(t |θj,ωj)

dt; (16)

thus, if convenient, δ(θ0,θ,ω) may be computed in terms of the sampling distribution of the
sufficient statistic p(t |θ,ω), rather than in terms of the complete probability model p(x |θ,ω).
Moreover, although not explicitly shown in the notation, the intrinsic discrepancy function
typically depends on the sample size. Indeed, if data x ∈ X ⊂ 
n, consist of a random sample
x = {x1, . . . , xn} of size n from p(x |θi,ω), then∫

X
p(x |θi,ω) log

p(x |θi,ω)
p(x |θj,ωj)

dx = n
∫


p(x |θi,ω) log

p(x |θi,ω)
p(x |θj,ωj)

dx, (17)

so that the intrinsic discrepancy associated with the full model p(x |θ,ω) is simply n times
the intrinsic discrepancy associated to the model p(x |θ,ω) which corresponds to a single
observation. Definition 3 may be used however in problems (say time series) where x does not
consist of a random sample.

It immediately follows from (9) and (14) that, with an intrinsic discrepancy loss function, the
hypothesisH0 should be rejected if (and only if) the posterior expected advantage of rejectingθ0,
given modelM and data x, is sufficiently large, so that the decision criterion becomes

Reject H0 iff d(θ0,x) =
∫

Θ

∫
Ω
δ(θ0,θ,ω)π(θ,ω |x) dθdω > d∗, (18)
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for some d∗ > 0. Since δ(θ0,θ,ω) is non-negative, d(θ0,x) is nonnegative. Moreover, if
φ = φ(θ) is a one-to-one transformation of θ, then d(φ(θ0),x) = d(θ0,x), so that the
expected intrinsic loss of rejecting H0 is invariant under reparametrization.

The function d(θ0,x) is a continuous, non-negative measure of how inappropriate (in loss
of information units) may be expected to be to simplify the model by accepting H0. Indeed,
d(θ0,x) is a precise measure of the (posterior) expected amount information (in nits) which
would be necessary to recover the assumed probability density p(x |θ,ω) from its closest
approximation withinM0 ≡ {p(x |θ0,ω), ω ∈ Ω}; it is a measure of the ‘strength of evidence’
againstM0 givenM ≡ {p(x |θ,ω), θ ∈ Θ, ω ∈ Ω} (cf. Good, 1950). In traditional language,
d(θ0,x) is a (monotone) test statistic for H0, and the null hypothesis should be rejected if the
value of d(θ0,x) exceeds some critical value d∗. Notice however that, in sharp contrast to
conventional hypothesis testing, the critical value d∗ is found to be a positive utility constant,
which may precisely be described as the number of information units which the decision maker
is prepared to lose in order to be able to work with the simpler model H0, and which does
not depend on the sampling properties of the test statistic. The procedure may be used with
standard, continuous (possibly improper) regular priors when θ is a continuous parameter (and
henceM0 ≡ {θ = θ0} is a zero measure set).

Naturally, to implement the decision criterion, both the prior π(θ,ω) and the utility con-
stant d∗ must be chosen. These two important issues are now successively addressed, leading
to a general decision criterion for hypothesis testing, the Bayesian reference criterion.

3.2. The Bayesian Reference Criterion (BRC)

Prior specification. An objective Bayesian procedure (objective in the sense that it depends
exclusively on the the assumed model and the observed data), requires an objective “non-
informative” prior which mathematically describes lack on relevant information about the quan-
tity of interest, and which only depends on the assumed statistical model and on the quantity of
interest. Recent literature contains a number of requirements which may be regarded as neces-
sary properties of any algorithm proposed to derive these ‘baseline’ priors; those requirements
include general applicability, invariance under reparametrization, consistent marginalization,
and appropriate coverage properties. The reference analysis algorithm, introduced by Bernardo
(1979) and further developed by Berger and Bernardo (1989, 1992) is, to the best of our knowl-
edge, the only available method to derive objective priors which satisfy all these desiderata.
For an introduction to reference analysis, see Bernardo and Ramón (1998); for a textbook level
description see Bernardo and Smith (1994, Ch. 5); for a critical overview of the topic, see
Bernardo (1997), references therein and ensuing discussion.

Within a given probability model p(x |θ,ω), the joint prior πφ(θ,ω) required to obtain
the (marginal) reference posterior π(φ |x) of some function of interest φ = φ(θ,ω) generally
depends on the function of interest, and its derivation is not necessarily trivial. However,
under regularity conditions (often met in practice) the required reference prior may easily be
found. For instance, if the marginal posterior distribution of the function of interest π(φ |x)
has an asymptotic approximation π̂(φ |x) = π̂(φ | φ̂) which only depends on the data through
a consistent estimator φ̂ = φ̂(x) of φ, then the φ-reference prior is simply obtained as

π(φ) ∝ π̂(φ | φ̂)
∣∣∣
φ̂=φ
. (19)

In particular, if the posterior distribution of φ is asymptotically normal N(φ | φ̂, s(φ̂)/√n),
then π(φ) ∝ s(φ)−1, so that the reference prior reduces to Jeffreys’ prior in one-dimensional,
asymptotically normal conditions. If, moreover, the sampling distribution of φ̂ only depends
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on φ, so that p(φ̂ |θ,ω) = p(φ̂ |φ), then, by Bayes theorem, the corresponding reference
posterior is

π(φ |x) ≈ π(φ | φ̂) ∝ p(φ̂ |φ)π(φ), (20)

and the approximation is exact if, given theφ-reference prior πφ(θ,ω), φ̂ is marginally sufficient
for φ (rather than just asymptotically marginally sufficient).

In our formulation of hypothesis testing, the function of interest (i.e., the function of the
parameters which drives the utility function) is the intrinsic discrepancy δ = δ(θ0,θ,ω). Thus,
we propose to use the joint reference prior πδ(θ,ω) which corresponds to the function of
interest δ = δ(θ0,θ,ω). This implies rejecting the null if (and only if) the reference posterior
expectation of the intrinsic discrepancy, which will be referred to as the intrinsic statistic
d(θ0,x), is sufficiently large. The proposed test statistic is thus

d(θ0,x) =
∫

∆
δ πδ(δ |x) dδ =

∫
Θ

∫
Ω
δ(θ0,θ,ω)πδ(θ,ω |x) dθdω, (21)

where πδ(θ,ω |x) ∝ p(x |θ,ω)πδ(θ,ω) is the posterior distribution which corresponds to
the δ-reference prior πδ(θ,ω).

Loss calibration. As described in Section 3.1, the intrinsic discrepancy between two fully
specified probability models is simply the minimum expected log-likelihood ratio for the true
model from data sampled from either of them. It follows that δ(θ0,θ,ω) measures, as a function
of θ and ω, the minimum expected log-likelihood ratio for p(x |θ,ω), against a model of the
form p(x |θ0,ω0), for some ω0 ∈ Ω.

Consequently, given some data x, the intrinsic statistic d(θ0,x), which is simply the refer-
ence posterior expectation of δ(θ0,θ,ω), is an estimate (given the available data) of the expected
log-likelihood ratio against the null model. This is a continuous measure of the evidence pro-
vided by the data against the (null) hypothesis that a model of the form p(x |θ0,ω0), for some
ω0 ∈ Ω, may safely be used as a proxy for the assumed model p(x |θ,ω). In particular, values
of d(θ0,x) of about about 2.5 or 5.0 should respectively be regarded as mild and strong evidence
against the (null) hypothesis θ = θ0.

Example 3. Testing the value of a Normal mean, σ known. Let data x = {x1, . . . , xn} be a
random sample from a normal distribution N(x |µ, σ2), where σ is assumed to be known, and
consider the canonical problem of testing whether these data are (or are not) compatible with
some precise hypothesis H0 ≡ {µ = µ0} on the value of the mean. Given σ, the logarithmic
divergence of p(x |µ0, σ) from p(x |µ, σ) is the symmetric function

k(µ0 |µ) = n
∫


N(x |µ, σ2) log

N(x |µ, σ2)
N(x |µ0, σ2)

dx =
n

2

(
µ− µ0

σ

)2

. (22)

Thus, the intrinsic discrepancy in this problem is simply

δ(µ0, µ) =
n

2

(
µ− µ0

σ

)2

=
1
2

(
µ− µ0

σ/
√
n

)2

, (23)

half the square of the standardized distance between µ and µ0. For known σ, the intrinsic
discrepancy δ(µ0, µ) is a piecewise invertible transformation of µ and, hence, the δ-reference
prior is simply πδ(µ) = πµ(µ) = 1. The corresponding reference posterior distribution of µ
is πδ(µ |x) = N(µ |x, σ2/n) and, therefore, the intrinsic statistic (the reference posterior
expectation of the intrinsic discrepancy) is

d(µ0,x) =
n

2

∫



(
µ− µ0

σ

)2

N
(
µ

∣∣∣x, σ2

n

)
dµ = 1

2(1 + z2), (24)
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where z = (x − µ0)/(σ/
√
n). Thus, d(µ0,x) is a simple transformation of z, the number of

standard deviations which µ0 lies away from the data mean x. The sampling distribution of
z2 is noncentral Chi squared with one degree of freedom and noncentrality parameter 2δ, and
its expected value is 1 + 2δ, where δ = δ(µ0, µ) is the intrinsic discrepancy given by (23).
It follows that, in this canonical problem, the expected value under repeated sampling of the
reference statistic d(µ0,x) is equal to one if µ = µ0, and increases linearly with n if µ �= µ0.

Scientists have often expressed the view (see e.g., Jaynes, 1980, or Jeffreys, 1980) that, in
this canonical situation, |z| ≈ 2 should be considered as a mild indication of evidence against
µ = µ0, while |z| > 3 should be regarded as strong evidence against µ = µ0. In terms of the
intrinsic statistic d(µ0,x) = (1 + z2)/2 this precisely corresponds to issuing warning signals
whenever d(µ0,x) is about 2.5 nits, and to reject the null whenever d(µ0,x) is larger than 5
nits, in perfect agreement with the log-likelihood ratio calibration mentioned above.

%

Notice, however, that the information scale suggested is an absolute scale which is inde-
pendent of the problem considered, so that rejecting the null whenever its (reference posterior)
expected intrinsic discrepancy from the true model is larger than (say) d∗ = 5 natural units
of information is a general rule (and one which corresponds to the conventional ‘3σ’ rule in
the canonical normal case). Notice too that the use of the ubiquitous 5% confidence level in
this problem would correspond to z = 1.96, or d∗ = 2.42 nits, which only indicates mild evi-
dence against the null; this is consistent with other arguments (see e.g., Berger and Delampady,
1987) suggesting that a p-value of about 0.05 does not generally provide sufficient evidence to
definitely reject the null hypothesis.

The preceding discussion justifies the following formal definition of an (objective) Bayesian
reference criterion for hypothesis testing:

Definition 3. Bayesian Reference Criterion (BRC). Let {p(x |θ,ω), θ ∈ Θ, ω ∈ Ω}, be a
statistical model which is assumed to have been generated some data x ∈ X , and consider a
precise value θ = θ0 among those which remain possible after x has ben observed. To decide
whether or not the precise value θ0 may be used as a proxy for the unknown value of θ,

(i) compute the intrinsic discrepancy δ(θ0,θ,ω);
(ii) derive the corresponding reference posterior expectation d(θ0,x) = E[δ(θ0,θ,ω) |x], and

state this number as a measure of evidence against the (null) hypothesis H0 ≡ {θ = θ0}.
(iii) If a formal decision is required, reject the null if, and only if, d(θ0,x) > d∗, for some context

dependent d∗. The values d∗ ≈ 1.0 (no evidence against the null), d∗ ≈ 2.5 (mild evidence
against the null) and d∗ > 5 (significant evidence against the null) may conveniently be
used for scientific communication.

%

The results derived in Example 3 may be used to analyze the large sample behaviour of
the proposed criterion in one-parameter problems. Indeed, if x = {x1, . . . , xn} is a large
random sample from a one-parameter regular model {p(x | θ), θ ∈ Θ}, the relevant reference
prior will be Jeffreys’ prior π(θ) ∝ i(θ)1/2, where i(θ) is Fisher’s information function, Hence,
the reference prior of φ(θ) =

∫ θ
i(θ)1/2 dθ will be uniform, and the reference posterior of φ

approximately normal N(φ | φ̂, 1/√n). Thus, using Example 3 and the fact that the intrinsic
statistic is invariant under one-to-one parameter transformations, one gets the approximation
d(θ0,x) = d(φ0,x) ≈ 1

2(1+z2), where z =
√
n(φ̂−φ0). Moreover, the sampling distribution

of z will approximately be a non-central χ2 with one degree of freedom and non centrality
parameter n(φ − φ0)2. Hence, the expected value of d(φ0,x) under repeated sampling from
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p(x | θ) will approximately be one if θ = θ0 and will linearly increase withn(θ−θ0)2 otherwise.
More formally, we may state

Proposition 1. One-Dimensional Asymptotic Behaviour. If x = {x1, . . . , xn} is a random
sample from a regular model {p(x | θ), θ ∈ Θ ⊂ 
, x ∈ X ⊂ 
} with one continuous pa-
rameter, and φ(θ) =

∫ θ
i(θ)1/2 dθ, where i(θ) = −Ex|θ[∂2 log p(x | θ)/∂θ2], then the intrinsic

statistic d(θ0,x) to test {θ = θ0} is

d(θ0,x) = 1
2[1 + z2(θ0, θ̂)] + o(n−1), z(θ0, θ̂) =

√
n[φ(θ̂)− φ(θ)].

where θ̂ = θ̂(x) = arg max p(x | θ). Moreover, the expected value of d(θ0,x) under repeated
sampling is

Ex | θ[d(θ0,x)] = 1 + n[φ(θ)− φ(θ0)]2 + o(n−1),

so that d(θ0,x) will concentrate around the value one if θ = θ0, and will linearly increase with n
otherwise. %

The arguments leading to Proposition 1 may be extended to multivariate situations, with or
without nuisance parameters.

In the final section of this paper we illustrate the behaviour of the Bayesian reference criterion
with three examples: (i) hypothesis testing on the value of a binomial parameter, which is used
to illustrate the shape of an intrinsic discrepancy, (ii) a problem of precise hypothesis testing
within a non-regular probability model, which is used to illustrate the exact behaviour of the
BRC criterion under repeated sampling, and (iii) a multivariate normal problem which illustrates
how the proposed procedure avoids Rao’s paradox on incoherent multivariate frequentist testing.

4. Examples

4.1. Testing the Value of the Parameter of a Binomial Bistribution

Let data x = {x1, . . . , xn} consist of n conditionally independent Bernoulli observations with
parameter θ, so that p(x | θ) = θx(1 − θ)1−x, 0 < θ < 1, x ∈ {0, 1}, and consider testing
whether or not the observed data x are compatible with the null hypothesis {θ = θ0}. The
directed logarithmic divergence of p(x | θj) from p(x | θi) is

k(θj | θi) = θi log
θi
θj

+ (1− θi) log
(1− θi)
(1− θj)

, (25)

and it is easily verified that k(θj | θi) < k(θi | θj) iff θi < θj < 1 − θi; thus, the intrinsic
discrepancy between p(x | θ0) and p(x | θ), represented in Figure 2, is

δ(θ0, θ) = n
{
k(θ | θ0) θ ∈ (θ0, 1− θ0),
k(θ0 | θ) otherwise (26)

Since δ(θ0, θ) is a piecewise invertible function of θ, the δ-reference prior is just the θ-reference
prior and, since Bernoulli is a regular model, this is Jeffreys’ prior, π(θ) = Be(θ | 1/2, 1/2). The
reference posterior is the Beta distribution π(θ |x) = π(θ | r, n) = Be(θ | r+1/2, n−r+1/2),
with r =

∑
xi, and the intrinsic statistic d(θ0,x) is the concave function

d(θ0,x) = d(θ0, r, n) =
∫ 1

0
δ(θ0, θ) π(θ | r, n) dθ = 1

2[1 + z(θ0, θ̂)2] + o(n−1) (27)

where z(θ0, θ̂) =
√
n[φ(θ̂)−φ(θ0)], and φ(θ) = 2ArcSin(

√
θ). The exact value of the intrinsic

statistic may easily be found by one-dimensional numerical integration, or may be expressed in
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Figure 2. Intrinsic discrepancy between two Bernoulli probability models.

terms of Digamma and incomplete Beta functions, but the approximation given above, directly
obtained from Proposition 1, is quite good, even for moderate samples.

The canonical particular case where θ0 = 1/2 deserves special attention. The exact value
of the intrinsic statistic is then

d(1/2, r, n) = ψ(n+ 1) + θ̃ ψ(r + 1/2) + (1− θ̃)ψ(n− r + 1/2)− log 2 (28)

where θ̃ = (r + 1/2)/(n+ 1) is the reference posterior mean. As one would certainly expect,
d(1/2, 0, n) = d(1/2, n, n) increases with n; moreover, it is found that d(1/2, 0, 6) = 2.92
and that d(1/2, 0, 10) = 5.41. Thus, when r = 0 (all failures) or r = n (all successes) the null
value θ0 = 1/2 should be questioned (d > 2.5) for all n > 5 and definitely rejected (d > 5)
for all n > 9.

4.2. Testing the Value of the Upper Limit of a Uniform Distribution

Let x = {x1, . . . , xn}, xi ∈ X(θ) = [0, θ] be a random sample of n uniform observations
in [0, θ], so that p(xi | θ) = θ−1, and consider testing the compatibility of data x with the
precise value θ = θ0. The logarithmic divergence of p(x | θj) from p(x | θi) is

k(θj | θi) = n
∫ θi

0
p(x | θi) log

p(x | θi)
p(x | θj)

dx =
{
n log(θj/θi) if θi < θj
∞ otherwise

(29)

and, therefore, the intrinsic discrepancy between p(x | θ) and p(x | θ0) is

δ(θ0, θ) = min{k(θ0 | θ), k(θ | θ0)} =
{
n log(θ0/θ) if θ0 > θ
n log(θ/θ0) if θ0 ≤ θ. (30)

Let x(n) = max{x1, . . . , xn} be the largest observation in the sample. The likelihood function
is p(x | θ) = θ−n, if θ > x(n), and zero otherwise; hence, x(n) is a sufficient statistic, and a
simple asymptotic approximation π̂(θ |x) to the posterior distribution of θ is given by

π̂(θ |x) = π̂(θ |x(n)) =
θ−n∫∞

x(n)
θ−n dθ

= (n− 1)xn−1
(n) θ

−n, θ > x(n). (31)
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It immediately follows from (31) that x(n) is a consistent estimator of θ; hence, using (19), the
θ-reference prior is given by

πθ(θ) ∝ π̂(θ |x(n))
∣∣∣
x(n)=θ

∝ θ−1. (32)

Moreover, for any θ0, δ = δ(θ0, θ) is a piecewise invertible function of θ and, hence, the
δ-reference prior is also πδ(θ) = θ−1. Using Bayes theorem, the corresponding reference
posterior is

πδ(θ |x) = πδ(θ |x(n)) = nxn(n) θ
−(n+1), θ > x(n); (33)

thus, the intrinsic statistic to test the compatibility of the data with any possible value θ0, i.e.,
such that θ0 > x(n), is given by

d(θ0,x) = d(t) =
∫ ∞
x(n)

δ(θ0, θ)πδ(θ |x(n)) dθ = 2t− log t− 1, t = (x(n)/θ0)
n, (34)

which only depends on t = t(θ0, x(n), n) = (x(n)/θ0)n ∈ [0, 1]. The intrinsic statistic d(t) is
the concave function represented in Figure 3, which has a unique minimum at t = 1/2. Hence,
the value of d(θ0,x) is minimized iff (x(n)/θ0)n = 1/2, i.e., iff θ0 = 21/nx(n), which is the
Bayes estimator for this loss function (and the median of the reference posterior distribution).

0.2 0.4 0.6 0.8 1

1

2

3

4

5

t

d(t)

Figure 3. The intrinsic statistic d(θ0,x) = d(t) = 2t− log t− 1 to test θ = θ0 which corresponds to
a random sample {x1 . . . , xn} from uniform distribution Un(x | 0, θ), as a function of t = (x(n)/θ0)n.

It may easily be shown that the distribution of t under repeated sampling is uniform in
[0, (θ/θ0)n] and, hence, the expected value of d(θ0,x) = d(t) under repeated sampling is

E[d(t) | θ] =
∫ (θ/θ0)n

0
(2t− log t− 1) dt = (θ/θ0)n − n log(θ/θ0), (35)

which is precisely equal to one if θ = θ0, and increases linearly with n otherwise. Thus,
once again, one would expect d(t) values to be about one under the null, and one would
expect to always reject a false null for a large enough sample. It could have been argued that
t = (x(n)/θ0)n is indeed a ‘natural’ intuitive measure of the evidence provided by the data
against the precise value θ0, but this is not needed; the procedure outlined automatically provides
an appropriate test function for any hypothesis testing problem.

The relationship between BRC and both frequentist testing and Bayesian tail area testing
procedures is easily established in this example. Indeed,
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(i) The sampling distribution of t under the null is uniform in [0, 1], so that t is precisely the
p-value which corresponds to a frequentist test based on any one-to-one function of t.

(ii) The posterior tail area, that is, the reference posterior probability that θ is larger than θ0, is∫∞
θ0
π(θ |x(n)) dθ = (x(n)/θ0)n = t, so that t is also the reference posterior tail area.

It is immediately verified that d(0.035) = 2.42, and that d(0.0025) = 5. It follows that, in this
problem, the bounds d∗ = 2.42 and d∗ = 5, respectively correspond to the p-values 0.035 and
0.0025. Notice that these numbers are not equal to the the values 0.05 and 0.0027 obtained
when testing a value µ = µ0 for a univariate normal mean. This illustrates an important general
point: for comparable strength of evidence in terms of information loss, the significance level
should depend on the assumed statistical model (even in simple, one-dimensional problems).

4.3. Testing the Value of a Multivariate Normal Mean

Let x = {x1, . . . ,xn} be a random sample from Nk(x |µ, σ2Σ), a multivariate normal dis-
tribution of dimension k, where Σ is a known symmetric positive-definite matrix. In this final
example, tests on the value of µ are presented for the case where σ is known. Tests for the case
where σ is unknown, tests on the value of some of the components of µ, and tests on the values
of regression coefficients β in normal regression models of the form Nk(y |Xβ, σ2Σ), may
be obtained from appropriate extensions of the results described below, and will be presented
elsewhere.

Intrinsic discrepancy. Without loss of generality, it may be assumed that σ = 1, for otherwise σ
may be included in the matrix Σ; since Σ is known, the vector of meansx is a sufficient statistic.
The sampling distribution of x is p(x |µ) = Nk(x |µ, n−1Σ); thus, using (16), the logarithmic
divergence of p(x |µj) from p(x |µi) is the symmetric function

k(µj |µi) =
∫

k
p(x |µi) log

p(x |µi)
p(x |µj)

dx =
n

2
(µi − µj)′Σ−1(µi − µj). (36)

It follows that the intrinsic discrepancy between the null model p(x |µ0) and the assumed model
p(x |µ) has the quadratic form

δ(µ0,µ) =
n

2
(µ− µ0)

′Σ−1(µ− µ0). (37)

The required test statistic, the intrinsic statistic, is the reference posterior expectation of δ(µ0,µ),
d(µ0,x) =

∫

k δ(µ0,µ)πδ(µ |x) dµ.

Marginal reference prior. We first make use of standard normal distribution theory to obtain the
marginal reference prior distribution ofλ = (µ−µ0)′Σ−1(µ−µ0), and hence that of δ = nλ/2.
Reference priors only depend on the asymptotic behaviour of the model and, for any regular
prior, the posterior distribution of µ is asymptotically multivariate normal Nk(µ |x, n−1Σ).
Consider η = A(µ − µ0), where A′A = Σ−1, so that λ = η′η; the posterior distribution
of η is asymptotically normal Nk(η |A(x − µ0), n−1Ik). Hence (see e.g., Rao, 1973, Ch. 3),
the posterior distribution of nλ = nη′η = n (µ − µ0)′Σ−1(µ − µ0) is asymptotically a
non-central Chi squared with k degrees of freedom and non-centrality parameter n λ̂, with
λ̂ = (x−µ0)′Σ−1(x−µ0), and this distribution has mean k+ n λ̂ and variance 2(k+ 2n λ̂).
It follows that the marginal posterior distribution of λ is asymptotically normal; specifically,

p(λ |x) ≈ N(λ | (k + n λ̂)/n, 2(k + 2n λ̂)/n2) ≈ N(λ | λ̂, 4λ̂/n). (38)



J. M. Bernardo and R. Rueda. Bayesian Hypothesis Testing 19

Hence, the posterior distribution of λ has an asymptotic approximation π̂(λ | λ̂) which only
depends on the data through λ̂, a consistent estimator of λ. Therefore, using (19), the λ-
reference prior is

πλ(λ) ∝ π̂(λ | λ̂)
∣∣∣
λ̂=λ
∝ λ−1/2. (39)

But the parameter of interest, δ = nλ/2, is a linear transformation of λ and, therefore, the
δ-reference prior is

πδ(δ) ∝ πλ(λ)|∂λ/∂δ| ∝ δ−1/2. (40)

Reference posterior and intrinsic statistic. Normal distribution theory may be used to derive the
exact sampling distribution of the asymptotically sufficient estimator λ̂ = (x−µ0)′Σ−1(x−µ0).
Indeed, letting y = A(x − µ0), with A′A = Σ−1, the sampling distribution of y is normal
Nk(y |A(µ−µ0), n−1Ik); thus, the sampling distribution of ny′y = n λ̂ is a non-central Chi
squared with k degrees of freedom and non-centrality parametern (µ−µ0)′Σ−1(µ−µ0), which
by equation (37) is precisely equal to 2δ. Thus, the asymptotic marginal posterior distribution
of δ only depends on the data through the statistic,

z2 = n λ̂ = n (x− µ0)
′Σ−1(x− µ0), (41)

whose sampling distribution only depends on δ. Therefore, using (20), the reference posterior
distribution of δ given z2 is

π(δ | z2) ∝ π(δ) p(z2 | δ) = δ−1/2χ2(z2 | k, 2δ). (42)
Transforming to polar coordinates it may be shown (Berger, Philippe, and Robert, 1998) that (42)
is actually the reference posterior distribution of δwhich corresponds to the ordered parametriza-
tion {δ,ω}, where ω is the vector of the angles, so that, using such a prior, π(δ |x) = π(δ | z2),
and z2 encapsulates all available information about the value of δ.
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Figure 4. Approximate behaviour of the intrinsic statistic d(µ0,x) ≈ E[δ | k, z2] as a function of
z2 = n (x− µ0)′Σ−1(x− µ0), for k = 1, 5, 10, 50 and 100.

k = 1 k = 10 k = 50 k = 100

z2

E[δ | k, z2]

After some tedious algebra, both the missing proportionality constant, and the expected
value of π(δ | z2) may be obtained in terms of the 1F1 confluent hypergeometric function,
leading to

d(µ0, z
2) = E[δ | k, z2] =

1
2

1F1(3/2; k/2, z2/2)
1F1(1/2; k/2, z2/2)

. (43)
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Moreover, the exact value for E[δ | k, z2] given by (43) has a simple linear approximation for
large values of z2, namely,

E[δ | k, z2] ≈ 1
2

(2− k + z2). (44)

Notice that, in general, (44) is only appropriate for values of z2 which are large relative to k
(showing strong evidence against the null), but it is actually exact for k = 1, so that (43) provides
a multivariate generalization of (24). Figure 4 shows the form of E[δ | k, z2] as a function of z2

for different values of the dimension k.

Numerical Example: Rao’s paradox. As an illustrative numerical example, consider one ob-
servation x = (2.06, 2.06) from a bivariate normal density with variances σ2

1 = σ2
2 = 1 and

correlation coefficient ρ = 0.5; the problem is to test whether or not the data x are compatible
with the null hypothesis µ = (0, 0). These data were used by Rao (1966) (and reassessed by
Healy, 1969), to illustrate the often neglected fact that using standard significance tests, it can
happen that a test for µ1 = 0 can lead to rejection at the same time as one for µ2 = 0, whereas
the test for µ = (0, 0) can result in acceptance, a clear example of frequentist incoherence,
often known as Rao’s paradox. Indeed, with those data, both µ1 = 0 and µ2 = 0 are rejected
at the 5% level (since x2

1 = x2
2 = 2.062 = 4.244, larger than 3.841, the 0.95 quantile of a χ2

1),
while the same (Hottelling’s T 2) test leads to acceptance of µ = (0, 0) at the same level (since
z2 = x′Σ−1x = 5.658, smaller than 5.991, the 0.95 quantile of a χ2

2). However, using (43),
we find, {

E[δ | 1, 2.062] = 1
2(1 + 2.062) = 2.622,

E[δ | 2, 5.658] = 1
2

1F1(3/2; 1, 5.658/2)
1F1(1/2; 1, 5.658/2)

= 2.727.
(45)

Thus, the BRC criterion suggests tentative rejection in both cases (since both numbers are larger
than 2.5, the ‘2σ’ rule in the canonical normal case), with some extra evidence in the bivariate
case, as intuition clearly suggests.
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Résumé

Pour un modèle probabiliste M ≡ {p(x |θ,ω),θ ∈ Θ,ω ∈ Ω} censé décrire le comportement probabiliste de

donnéesx ∈ X , nous soutenons que tester si les données sont compatibles avec une hypothèseH0 ≡ {θ = θ0} doit

être considéré comme un problème décisionnel concernant l’usage du modèleM0 ≡ {p(x |θ0,ω),ω ∈ Ω}, avec

une fonction de coût qui mesure la quantité d’information qui peut être perdue si le modèle simplifiéM0 est utilisé

comme approximation du véritable modèleM . Le coût moyen, calculé par rapport à une loi a priori de référence

idoine fournit une statistique de test pertinente, la statistique intrinsèque d(θ0,x), invariante par reparamétrisation.

La statistique intrinsèque d(θ0,x) est mesurée en unités d’information, et sa calibrage, qui est independante de

la taille de l’échantillon et de la dimension du paramétre, ne dépend pas de sa distribution à l’échantillonage. La

règle de Bayes correspondante, le critère de Bayes de référence (BRC), indique que H0 doit seulement être rejeté

si le coût a posteriori moyen de la perte d’information à utiliser le modèle simplifiéM0 est trop grande. Le critère

BRC fournit une solution bayésienne générale et objective pour les tests d’hypothèses précises qui ne réclame pas

une masse de Dirac concentrée sur M0. Par conséquent, elle échappe au paradoxe de Lindley. Cette théorie est

illustrée dans le contexte de variables normales multivariées, et on montre qu’elle évite le paradoxe de Rao sur

l’inconsistence existant entre tests univariés et multivariés.



Por mandato constitucional, las le-
yes electorales deben especificar la
forma de distribuir los escaños dis-
ponibles entre los partidos que
concurren a las elecciones aten-
diendo a criterios de representa-
ción proporcional. En España se
utiliza para ello un procedimiento,
conocido como ley d’Hondt, que
pretende proporcionar una buena
aproximación a la representación
proporcional. Sin embargo, un es-
tudio reciente ha demostrado que
el problema de determinar la me-
jor aproximación posible a
una asignación proporcio-
nal de escaños tiene, en la
práctica, una única solu-
ción matemáticamente co-
rrecta, que no es la que ac-
tualmente se utiliza. Se des-
cribe un procedimiento
que permite obtenerla con
facilidad, y se ilustra con
resultados de las últimas
elecciones catalanas.

El artículo 68 de la Cons-
titución española señala
que la circunscripción elec-
toral es la provincia, especifi-
ca que ley electoral distribui-
rá el número total de Dipu-
tados del Congreso entre las
circunscripciones asignan-
do una representación míni-
ma inicial a cada una y dis-
tribuyendo los demás en
proporción a la población,
y ordena que la distribución
de escaños entre los parti-
dos en cada circunscripción
se efectúe “atendiendo a cri-
terios de representación pro-
porcional”. Como el núme-
ro de escaños que se asigna
a cada partido debe ser un
número entero, no es posi-
ble una distribución de escaños
exactamente proporcional a los vo-
tos obtenidos por cada partido. Pa-
ra resolver este problema, la ley
electoral vigente utiliza un procedi-
miento conocido como ley d’Hon-
dt. Es fácil comprobar, sin embar-
go, que este procedimiento distor-
siona la voluntad popular, distribu-
yendo los escaños de una forma
que no respeta la representación
proporcional. Un reciente estudio
matemático realizado en la Univer-
sidad de Valencia, demuestra que el
problema del reparto entero de es-
caños de forma aproximadamente
proporcional tiene, en la práctica,
una única solución óptima, inde-
pendiente del concepto de aproxi-
mación utilizado, y describe un mé-
todo sencillo para obtenerla. La so-
lución propuesta permite mejorar
también la proporcionalidad de la
representación obtenida tanto en
las elecciones autonómicas como
en las elecciones municipales, pues-
to que, en ambos casos, las leyes
electorales vigentes hacen uso de la
ley d’Hondt para distribuir los esca-
ños autonómicos correspondientes
a cada provincia, o los concejales
correspondientes a cada municipio.

� El análisis matemático proporcio-
na la solución correcta
Las diferencias reales entre la solu-
ción proporcionada por la ley
d’Hondt y la solución correcta pue-
den ser ilustradas con los resulta-
dos correspondientes a la provincia
de Lleida en las elecciones autonó-
micas catalanas del pasado 16 de

Noviembre (ver primer gráfico).
En ese caso, los votos finalmente
obtenidos por los cinco partidos
que, habiendo conseguido al me-
nos un 3% de los votos válidos en
toda Catalunya, podían optar a re-
presentación parlamentaria (CiU,
PSC, ERC, PP e ICV) fueron, en
ese orden, 83.636, 45.214, 40.131,
19.446 y 8.750, es decir 42,42%,
22,93%, 20,35%, 9,86% y 4,44% del
total de votos obtenidos en Lleida
por esos cinco partidos. La ley elec-
toral vigente atribuye a Lleida 15
de los 135 escaños del parlamento
catalán; para que su distribución
fuese exactamente proporcional
CiU, PSC, ERC, PP e ICV debe-
rían haber recibido 6,36, 3,44, 3,05,
1,48 y 0,67 escaños respectivamen-
te. Si, de acuerdo con la Constitu-
ción, se trata de conseguir una dis-
tribución proporcional, ésta sería
la solución ideal. El problema técni-
co consiste en aproximar estos valo-
res por números enteros, para con-
vertir la solución ideal en una solu-
ción posible, y hacerlo de forma
que el resultado represente una dis-
tribución de escaños tan cercana a
la distribución de votos como sea
posible. Puede demostrarse que la
solución correcta es atribuir 6, 3, 3,
2 y 1 escaños a CiU, PSC, ERC,

PP e ICV, respectivamente, lo que
representa el 40%, 20%, 20%,
13,33% y 6,67% de los 15 escaños.

Puede comprobarse que (co-
mo resulta casi evidente a simple
vista), cualquiera que sea el crite-
rio de aproximación que se quiera
utilizar, la distribución de escaños
correspondiente a la solución co-
rrecta está notablemente más
próxima a la distribución de votos
que la distribución de escaños co-
rrespondiente a la ley d’Hondt.

� La ley d’Hondt no respeta la pro-
porcionalidad y favorece a los parti-
dos mayoritarios
En análisis matemático existen
muchas formas diferentes de me-
dir la discrepancia entre dos dis-
tribuciones.

Entre las más utilizadas es-
tán la distancia euclídea, la dis-
tancia de Hellinger y la discre-
pancia logarítmica. En el caso
de Lleida, se ha comprobado
que, entre las 3876 formas posi-
bles de distribuir sus 15 escaños
entre los cinco partidos con de-
recho a representación parla-
mentaria, existen 24 asignacio-
nes mejores que la proporciona-
da por la Ley d’Hondt, en el
sentido de que definen una dis-

tribución de escaños más próxi-
ma a la distribución de votos
para cualquiera de esas medi-
das de discrepancia. En particu-
lar, la solución correcta está 8,1
veces más cerca de la solución
ideal que la solución d’Hondt si
se utiliza la distancia de Hellin-
ger para medir la proximidad,
4,6 veces más cerca si se utiliza
la discrepancia logarítmica, y
1,4 veces más cerca si se utiliza
la distancia euclídea.

Las diferencias entre la solu-
ción correcta y la ley
d’Hondt tienden a desa-
parecer cuando aumenta
el número de escaños a
repartir. Por ejemplo, la
soluciónd’Hondt para la
distribución de los 85 es-
caños de la provincia de
Barcelona en esas mis-
mas elecciones coincide
con la distribución co-
rrecta. Recíprocamente,
las diferencias aumentan
cuando el número de es-
caños a repartir disminu-
ye. Por ejemplo, si sólo se
repartiesen 2 escaños en-
tre 2 partidos, la ley
d’Hondt asignaría los 2
escaños al partido mayo-
ritario siempre que éste
obtuviese al menos dos
terceras partes de los vo-
tos, mientras que la solu-
ción correcta con la dis-
tancia euclídea es hacer-
lo únicamente a partir de
las tres cuartas partes, y
la solución con la de He-
llinger a partir de las cua-
tro quintas partes. La ten-
dencia de la Ley d’Hondt
a distorsionar la volun-

tad popular en el sentido de fa-
vorecer a los partidos mayorita-
rios resulta evidente.

� Fácil determinación de la solu-
ción correcta
Para cualquier conjunto de re-
sultados electorales, la solución
que minimiza la distancia
euclídea (una extensión de la
distancia entre dos puntos del
plano dada por el teorema de
Pitágoras) puede ser encontra-
da mediante un procedimiento
muy sencillo (mucho más fácil
que el procedimiento necesario
para determinar la solución pro-
puesta por d’Hondt). Como se
indica en la Tabla 2 (correspon-
diente a Lleida 2003), se parte
del número de votos obtenidos
por cada uno de los partidos
con derecho a representación
parlamentaria; se determina la
solución ideal, repartiendo los
escaños correspondientes a la
provincia de forma proporcio-
nal a los votos obtenidos por
cada uno de esos partidos; se
especifican sus aproximaciones
enteras, es decir los números en-
teros más cercanos (por defecto
y por exceso) a la solución
ideal, y se calculan los errores
correspondientes a cada una de
las aproximaciones enteras (es
decir los valores absolutos de
sus diferencias con la solución
ideal). La solución correcta se
obtiene entonces partiendo del
más pequeño de los errores ab-
solutos y procediendo por or-

den, de menor a mayor error,
para asignar a cada partido la
solución con mínimo error que
sea compatible con el número
total de escaños que deben ser
distribuidos.

El el caso de Lleida (tabla 2),
el menor de los errores absolu-
tos es 0,05, que corresponde a
asignar 3 escaños a ERC, lo que
constituye el primer elemento
de la solución. El menor de los
errores absolutos correspon-
dientes a los demás partidos es
0,33, que corresponde a asignar
1 escaño a ICV, el segundo ele-
mento de la solución. El menor
de los errores restantes es 0,36,
que corresponde a asignar 6 es-
caños a CiU; le sigue 0,44, que
corresponde a asignar 3 esca-
ños al PSOE. Como el número
total de escaños a asignar es 15,
al PP se le deben asignar los 2
escaños restantes (única asigna-
ción compatible con las ya reali-
zadas), con lo que se completa
la la solución correcta para la
distancia euclídea.

En casos extremos, cuando el
número de escaños a repartir es
muy pequeño, la solución ópti-
ma puede depender de la distan-
cia elegida, pero en la práctica,
con el número de escaños por cir-
cunscripción que se utilizan en
España, la solución óptima es in-
dependiente de la medida de dis-
tancia elegida, y distinta de la
que proporciona la ley d'Hondt.

� Por respeto a la Constitución, las
leyes deberían ser modificadas
La ley electoral define el núme-
ro total de escaños del Parla-
mento, su distribución por cir-
cunscripciones, el porcentaje
mínimo de votos exigido, y el
procedimiento utilizado para
distribuir las escaños entre los
partidos que superan ese um-
bral. Los tres primeros de estos
aspectos deben ser el resultado
de una negociación política en
la que es necesario valorar argu-
mentos muy diversos. Sin em-
bargo, el último elemento, el
procedimiento utilizado para la
asignación de escaños, es la so-
lución a un problema matemáti-
co, y debe ser discutido en tér-
minos matemáticos.

El mandato constitucional de
distribuir los escaños de cada cir-
cunscripción “atendiendo a crite-
rios de representación proporcio-
nal” tiene, para cada función de
distancia, una única solución ma-
temáticamente correcta. En la
práctica, con el número de esca-
ños que se distribuyen en España
en cada circunscripción, la solu-
ción no depende del criterio de
aproximación que quiera utilizar-
se. Esta solución óptima es muy
fácil de implementar, y no es la
que actualmente se utiliza. Por
respeto a los ideales democráti-
cos consagrados en la Constitu-
ción, nuestras leyes electorales de-
berían ser adecuadamente modi-
ficadas.

José Miguel Bernardo es catedrático de
Estadística. Los detalles matemáticos
pueden ser consultados en Proportiona-
lity in parliamentary democracy: An al-
ternative to Jefferson-d’Hondt rule. J.
M. Bernardo (2004). Universidad de
Valencia.

Se propone una modificación a la ley
electoral para aproximarla al mandato

constitucional de representación proporcional

SISTEMA ELECTORAL

Una alternativa
a la ley d’Hondt

JOSÉ MIGUEL BERNARDO

Elecciones 2004

Asignación de escaños autonómicos (Lleida, 2003)

Algoritmo para una correcta asignación de escaños (Lleida, 2003)

Votos
Porcentaje de votos
Solución ideal

Solución correcta
Porcentaje de escaños

Solución d'Hondt
Porcentaje de escaños

83.636
42,42%

6,36

6
40,00%

7
46,67%

45.214
22,93%

3,44

3
20,00%

4
26,67%

40.131
20,35%

3,05

3
20,00%

3
20,00%

19.446
9,96%

1,48

2
13,33%

1
6,67%

8.750
4,44%

0,67

1
6,67%

0
0

197.177
100,00%

15,00

15
100,00%

15
100,00%

CiU PSC ERC PP ICV TOTAL15 ESCAÑOS

15 ESCAÑOS

Votos
Solución ideal

Límites inferiores
Límites superiores
Diferencias absolutas
inferiores
Diferencias absolutas
superiores
Solución correcta

83.636
6,36

6
7

0,36

0,64

6

45.214
3,44

3
4

0,44

0,56

3

40.131
3,05

3
4

0,05

0,95

3

19.446
1,48

1
2

0,48

0,52

2

8.750
0,67

0
1

0,67

0,33

1

197.177
15

15

CiU PSC ERC PP ICV TOTAL
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Reference Analysis

José M. Bernardo 1
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Abstract

This chapter describes reference analysis, a method to produce Bayesian inferen-
tial statements which only depend on the assumed model and the available data.
Statistical information theory is used to define the reference prior function as a
mathematical description of that situation where data would best dominate prior
knowledge about the quantity of interest. Reference priors are not descriptions of
personal beliefs; they are proposed as formal consensus prior functions to be used as
standards for scientific communication. Reference posteriors are obtained by formal
use of Bayes theorem with a reference prior. Reference prediction is achieved by
integration with a reference posterior. Reference decisions are derived by minimiz-
ing a reference posterior expected loss. An information theory based loss function,
the intrinsic discrepancy, may be used to derive reference procedures for conven-
tional inference problems in scientific investigation, such as point estimation, region
estimation and hypothesis testing.

Key words: Amount of information, Intrinsic discrepancy, Bayesian asymptotics,
Fisher information, Objective priors, Noninformative priors, Jeffreys priors,
Reference priors, Maximum entropy, Consensus priors, Intrinsic statistic, Point
Estimation, Region Estimation, Hypothesis testing,

1 Introduction and notation

This chapter is mainly concerned with statistical inference problems such
as occur in scientific investigation. Those problems are typically solved condi-
tional on the assumption that a particular statistical model is an appropriate
description of the probabilistic mechanism which has generated the data, and
the choice of that model naturally involves an element of subjectivity. It has
become standard practice, however, to describe as “objective” any statistical
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analysis which only depends on the model assumed and the data observed. In
this precise sense (and only in this sense) reference analysis is a method to
produce “objective” Bayesian inference.

Foundational arguments (Savage, 1954; de Finetti, 1970; Bernardo and Smith,
1994) dictate that scientists should elicit a unique (joint) prior distribution
on all unknown elements of the problem on the basis of available informa-
tion, and use Bayes theorem to combine this with the information provided
by the data, encapsulated in the likelihood function. Unfortunately however,
this elicitation is a formidable task, specially in realistic models with many
nuisance parameters which rarely have a simple interpretation. Weakly in-
formative priors have here a role to play as approximations to genuine proper
prior distributions. In this context, the (unfortunately very frequent) näıve
use of simple proper “flat” priors (often a limiting form of a conjugate family)
as presumed “noninformative” priors often hides important unwarranted as-
sumptions which may easily dominate, or even invalidate, the analysis: see e.g.,
Hobert and Casella (1996, 1998), Casella (1996), Palmer and Pettit (1996),
Hadjicostas and Berry (1999) or Berger (2000). The uncritical (ab)use of such
“flat” priors should be strongly discouraged. An appropriate reference prior
(see below) should instead be used. With numerical simulation techniques,
where a proper prior is often needed, a proper approximation to the reference
prior may be employed.

Prior elicitation would be even harder in the important case of scientific
inference, where some sort of consensus on the elicited prior would obviously
be required. A fairly natural candidate for such a consensus prior would be a
“noninformative” prior, where prior knowledge could be argued to be domin-
ated by the information provided by the data. Indeed, scientific investigation
is seldom undertaken unless it is likely to substantially increase knowledge
and, even if the scientist holds strong prior beliefs, the analysis would be most
convincing to the scientific community if done with a consensus prior which is
dominated by the data. Notice that the concept of a “noninformative” prior
is relative to the information provided by the data.

As evidenced by the long list of references which concludes this chapter, there
has been a considerable body of conceptual and theoretical literature devoted
to identifying appropriate procedures for the formulation of “noninformative”
priors. Beginning with the work of Bayes (1763) and Laplace (1825) under the
name of inverse probability, the use of “noninformative” priors became central
to the early statistical literature, which at that time was mainly objective
Bayesian. The obvious limitations of the principle of insufficient reason used
to justify the (by then) ubiquitous uniform priors, motivated the developments
of Fisher and Neyman, which overshadowed Bayesian statistics during the first
half of the 20th century. The work of Jeffreys (1946) prompted a strong revival
of objective Bayesian statistics; the seminal books by Jeffreys (1961), Lindley
(1965), Zellner (1971), Press (1972) and Box and Tiao (1973), demonstrated
that the conventional textbook problems which frequentist statistics were able
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to handle could better be solved from a unifying objective Bayesian perspect-
ive. Gradual realization of the fact that no single “noninformative” prior could
possibly be always appropriate for all inference problems within a given multi-
parameter model (Dawid, Stone and Zidek, 1973; Efron, 1986) suggested that
the long search for a unique “noninformative” prior representing “ignorance”
within a given model was misguided. Instead, efforts concentrated in identi-
fying, for each particular inference problem, a specific (joint) reference prior
on all the unknown elements of the problem which would lead to a (marginal)
reference posterior for the quantity of interest, a posterior which would always
be dominated by the information provided by the data (Bernardo, 1979b).
As will later be described in detail, statistical information theory was used to
provide a precise meaning to this dominance requirement.

Notice that reference priors were not proposed as an approximation to the
scientist’s (unique) personal beliefs, but as a collection of formal consensus
(not necessarily proper) prior functions which could conveniently be used as
standards for scientific communication. As Box and Tiao (1973, p. 23) re-
quired, using a reference prior the scientist employs the jury principle; as the
jury is carefully screened among people with no connection with the case, so
that testimony may be assumed to dominate prior ideas of the members of the
jury, the reference prior is carefully chosen to guarantee that the information
provided by the data will not be overshadowed by the scientist’s prior beliefs.

Reference posteriors are obtained by formal use of Bayes theorem with a ref-
erence prior function. If required, they may be used to provide point or region
estimates, to test hypothesis, or to predict the value of future observations.
This provides a unified set of objective Bayesian solutions to the conventional
problems of scientific inference, objective in the precise sense that those solu-
tions only depend on the assumed model and the observed data.

By restricting the class P of candidate priors, the reference algorithm makes
it possible to incorporate into the analysis any genuine prior knowledge (over
which scientific consensus will presumably exist). From this point of view,
derivation of reference priors may be described as a new, powerful method
for prior elicitation. Moreover, when subjective prior information is actually
specified, the corresponding subjective posterior may be compared with the
reference posterior—hence its name—to assess the relative importance of the
initial opinions in the final inference.

In this chapter, it is assumed that probability distributions may be described
through their probability density functions, and no notational distinction is
made between a random quantity and the particular values that it may take.
Bold italic roman fonts are used for observable random vectors (typically data)
and bold italic greek fonts for unobservable random vectors (typically para-
meters); lower case is used for variables and upper case calligraphic for their
dominion sets. Moreover, the standard mathematical convention of referring
to functions, say fx and gx of x ∈ X , respectively by f(x) and g(x) will be
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used throughout. Thus, the conditional probability density of data x ∈ X
given θ will be represented by either px |θ or p(x |θ), with p(x |θ) ≥ 0 and∫
X p(x |θ) dx = 1, and the posterior distribution of θ ∈ Θ given x will be rep-

resented by either pθ |x or p(θ |x), with p(θ |x) ≥ 0 and
∫
Θ p(θ |x) dθ = 1.

This admittedly imprecise notation will greatly simplify the exposition. If
the random vectors are discrete, these functions naturally become probability
mass functions, and integrals over their values become sums. Density func-
tions of specific distributions are denoted by appropriate names. Thus, if x
is an observable random variable with a normal distribution of mean µ and
variance σ2, its probability density function will be denoted N(x |µ, σ). If the
posterior distribution of µ is Student with location x, scale s, and n−1 degrees
of freedom, its probability density function will be denoted St(µ |x, s, n− 1).

The reference analysis argument is always defined in terms of some paramet-
ric model of the general form M ≡ {p(x |ω), x ∈ X , ω ∈ Ω}, which describes
the conditions under which data have been generated. Thus, data x are as-
sumed to consist of one observation of the random vector x ∈ X , with probab-
ility density p(x |ω) for some ω ∈ Ω. Often, but not necessarily, data will con-
sist of a random sample x = {y1, . . . ,yn} of fixed size n from some distribution
with, say, density p(y |ω), y ∈ Y , in which case p(x |ω) =

∏n
j=1 p(yj |ω) and

X = Yn. In this case, reference priors relative to model M turn out to be the
same as those relative to the simpler model My ≡ {p(y |ω), y ∈ Y , ω ∈ Ω}.

Let θ = θ(ω) ∈ Θ be some vector of interest; without loss of generality, the
assumed model M may be reparametrized in the form

M ≡ { p(x |θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λ }, (1)

where λ is some vector of nuisance parameters; this is often simply referred to
as “model” p(x |θ, λ). Conditional on the assumed model, all valid Bayesian
inferential statements about the value of θ are encapsulated in its posterior
distribution p(θ |x) ∝ ∫

Λ p(x |θ, λ) p(θ, λ) dλ, which combines the informa-
tion provided by the data x with any other information about θ contained in
the prior density p(θ, λ). Intuitively, the reference prior function for θ, given
model M and a class of candidate priors P , is that (joint) prior πθ(θ, λ |M,P)
which may be expected to have a minimal effect on the posterior inference
about the quantity of interest θ among the class of priors which belong
to P , relative to data which could be obtained from M. The reference prior
πθ(ω |M,P) is specifically designed to be a reasonable consensus prior (within
the class P of priors compatible with assumed prior knowledge) for inferences
about a particular quantity of interest θ = θ(ω), and it is always conditional
to the specific experimental design M ≡ {p(x |ω), x ∈ X , ω ∈ Ω} which is
assumed to have generated the data.

By definition, the reference prior πθ(θ, λ |M,P) is “objective”, in the sense
that it is a well-defined mathematical function of the vector of interest θ, the
assumed model M, and the class P of candidate priors, with no additional
subjective elements. By formal use of Bayes theorem and appropriate integ-
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ration (provided the integral is finite), the (joint) reference prior produces a
(marginal) reference posterior for the vector of interest

π(θ |x,M,P) ∝
∫
Λ

p(x |θ, λ) πθ(θ, λ |M,P) dλ, (2)

which could be described as a mathematical expression of the inferential con-
tent of data x with respect to the value of θ, with no additional knowledge
beyond that contained in the assumed statistical model M and the class P of
candidate priors (which may well consist of the class P0 of all suitably regular
priors). To simplify the exposition, the dependence of the reference prior on
both the model and the class of candidate priors is frequently dropped from the
notation, so that πθ(θ, λ) and π(θ |x) are written instead of πθ(θ, λ |M,P)
and π(θ |x,M,P).

The reference prior function πθ(θ, λ) often turns out to be an improper
prior, i.e., a positive function such that

∫
Θ

∫
Λ πθ(θ, λ) dθ dλ diverges and,

hence, cannot be renormalized into a proper density function. Notice that this
is not a problem provided the resulting posterior distribution (2) is proper
for all suitable data. Indeed the declared objective of reference analysis is to
provide appropriate reference posterior distributions; reference prior functions
are merely useful technical devices for a simple computation (via formal use
of Bayes theorem) of reference posterior distributions. For discussions on the
axiomatic foundations which justify the use of improper prior functions, see
Hartigan (1983) and references therein.

In the long quest for objective posterior distributions, several requirements
have emerged which may reasonably be requested as necessary properties of
any proposed solution:

(1) Generality. The procedure should be completely general, i.e., applicable
to any properly defined inference problem, and should produce no unten-
able answers which could be used as counterexamples. In particular, an
objective posterior π(θ |x) must be a proper probability distribution for
any data set x large enough to identify the unknown parameters.

(2) Invariance. Jeffreys (1946), Hartigan (1964), Jaynes (1968), Box and Tiao
(1973, Sec. 1.3), Villegas (1977b, 1990), Dawid (1983), Yang (1995), Datta
and J. K. Ghosh (1995b), Datta and M. Ghosh (1996). For any one-to-one
function φ = φ(θ), the posterior π(φ |x) obtained from the reparamet-
rized model p(x |φ, λ) must be coherent with the posterior π(θ |x) ob-
tained from the original model p(x |θ, λ) in the sense that, for any data
set x ∈ X , π(φ |x) = π(θ |x)| dθ/ dφ|. Moreover, if the model has a suf-
ficient statistic t = t(x), then the posterior π(θ |x) obtained from the
full model p(x |θ, λ) must be the same as the posterior π(θ | t) obtained
from the equivalent model p(t |θ, λ).
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(3) Consistent marginalization. Stone and Dawid (1972), Dawid, Stone and
Zidek (1973), Dawid (1980). If, for all data x, the posterior π1(θ |x)
obtained from model p(x |θ, λ) is of the form π1(θ |x) = π1(θ | t) for
some statistic t = t(x) whose sampling distribution p(t |θ, λ) = p(t |θ)
only depends on θ, then the posterior π2(θ | t) obtained from the marginal
model p(t |θ) must be the same as the posterior π1(θ | t) obtained from
the original full model.

(4) Consistent sampling properties. Neyman and Scott (1948), Stein (1959),
Dawid and Stone (1972, 1973), Cox and Hinkley (1974, Sec. 2.4.3), Stone
(1976), Lane and Sudderth (1984). The properties under repeated sampling
of the posterior distribution must be consistent with the model. In par-
ticular, the family of posterior distributions {π(θ |xj), xj ∈ X} which
could be obtained by repeated sampling from p(xj |θ, ω) should concen-
trate on a region of Θ which contains the true value of θ.

Reference analysis, introduced by Bernardo (1979b) and further developed
by Berger and Bernardo (1989, 1992a,b,c), appears to be the only available
method to derive objective posterior distributions which satisfy all these de-
siderata. This chapter describes the basic elements of reference analysis, states
its main properties, and provides signposts to the huge related literature.

Section 2 summarizes some necessary concepts of discrepancy and conver-
gence, which are based on information theory. Section 3 provides a formal
definition of reference distributions, and describes their main properties. Sec-
tion 4 describes an integrated approach to point estimation, region estimation,
and hypothesis testing, which is derived from the joint use of reference ana-
lysis and an information-theory based loss function, the intrinsic discrepancy.
Section 5 provides many additional references for further reading on reference
analysis and related topics.

2 Intrinsic discrepancy and expected information

Intuitively, a reference prior for θ is one which maximizes what it is not
known about θ, relative to what could possibly be learnt from repeated ob-
servations from a particular model. More formally, a reference prior for θ is
defined to be one which maximizes—within some class of candidate priors—
the missing information about the quantity of interest θ, defined as a limiting
form of the amount of information about its value which repeated data from
the assumed model could possibly provide. In this section, the notions of dis-
crepancy, convergence, and expected information—which are required to make
these ideas precise—are introduced and illustrated.

Probability theory makes frequent use of divergence measures between prob-
ability distributions. The total variation distance, Hellinger distance, Kullback-
Leibler logarithmic divergence, and Jeffreys logarithmic divergence are fre-
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quently cited; see, for example, Kullback (1968, 1983, 1987) for precise defini-
tions and properties. Each of those divergence measures may be used to define
a type of convergence. It has been found, however, that the behaviour of many
important limiting processes, in both probability theory and statistical infer-
ence, is better described in terms of another information-theory related diver-
gence measure, the intrinsic discrepancy (Bernardo and Rueda, 2002), which
is now defined and illustrated.

Definition 1 (Intrinsic discrepancy) The intrinsic discrepancy δ{p1, p2}
between two probability distributions of a random vector x ∈ X , specified by
their density functions p1(x), x ∈ X 1 ⊂ X , and p2(x), x ∈ X 2 ⊂ X , with
either identical or nested supports, is

δ{p1, p2} = min
{ ∫

X1

p1(x) log
p1(x)

p2(x)
dx,

∫
X2

p2(x) log
p2(x)

p1(x)
dx

}
, (3)

provided one of the integrals (or sums) is finite. The intrinsic discrepancy
between two parametric models for x ∈ X , M1 ≡ {p1(x |ω), x ∈ X 1 ω ∈ Ω}
and M2 ≡ {p2(x |ψ), x ∈ X 2 ψ ∈ Ψ}, is the minimum intrinsic discrepancy
between their elements,

δ{M1,M2} = inf
ω∈Ω, ψ∈Ψ

δ{p1(x |ω), p2(x |ψ)}. (4)

The intrinsic discrepancy is a new element of the class of intrinsic loss
functions defined by Robert (1996); the concept is not related to the concepts
of “intrinsic Bayes factors” and “intrinsic priors” introduced by Berger and
Pericchi (1996), and reviewed in Pericchi (2005).

Notice that, as one would require, the intrinsic discrepancy δ{M1,M2}
between two parametric families of distributions M1 and M2 does not depend
on the particular parametrizations used to describe them. This will be crucial
to guarantee the desired invariance properties of the statistical procedures
described later.

It follows from Definition 1 that the intrinsic discrepancy between two prob-
ability distributions may be written in terms of their two possible Kullback-
Leibler directed divergences as

δ{p2, p1} = min
{

k{p2 | p1}, k{p1 | p2}
}

(5)

where (Kullback and Leibler, 1951) the k{pj | pi}’s are the non-negative in-
variant quantities defined by

k{pj | pi} =
∫

X i

pi(x) log
pi(x)

pj(x)
dx, with X i ⊆ X j. (6)
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Since k{pj | pi} is the expected value of the logarithm of the density (or prob-
ability) ratio for pi against pj, when pi is true, it also follows from Definition 1
that, if M1 and M2 describe two alternative models, one of which is assumed
to generate the data, their intrinsic discrepancy δ{M1,M2} is the minimum
expected log-likelihood ratio in favour of the model which generates the data
(the “true” model). This will be important in the interpretation of many of
the results described in this chapter.

The intrinsic discrepancy is obviously symmetric. It is non-negative, vanishes
if (and only if) p1(x) = p2(x) almost everywhere, and it is invariant under
one-to-one transformations of x. Moreover, if p1(x) and p2(x) have strictly
nested supports, one of the two directed divergences will not be finite, but
their intrinsic discrepancy is still defined, and reduces to the other directed
divergence. Thus, if X i ⊂ X j, then δ{pi, pj} = δ{pj, pi} = k{pj | pi}.

The intrinsic discrepancy is information additive. Thus, if x consists of n
independent observations, so that x = {y1, . . . ,yn} and pi(x) =

∏n
j=1 qi(yj),

then δ{p1, p2} = n δ{q1, q2}. This statistically important additive property is
essentially unique to logarithmic discrepancies; it is basically a consequence
of the fact that the joint density of independent random quantities is the
product of their marginals, and the logarithm is the only analytic function
which transforms products into sums.

Example 1 Intrinsic discrepancy between binomial distributions. The
intrinsic discrepancy δ{θ1, θ2 |n} between the two binomial distributions

Figure 1 Intrinsic discrepancy between Bernoulli variables.
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with common value for n, p1(r) = Bi(r |n, θ1) and p2(r) = Bi(r |n, θ2), is

δ{p1, p2}= δ{θ1, θ2 |n} = n δ1{θ1, θ2}, (7)

δ1{θ1, θ2}= min[ k{θ1 | θ2}, k{θ2 | θ1} ]

k(θi | θj) = θj log[θj/θi] + (1 − θj) log[(1 − θj)/(1 − θi)],

where δ1{θ1, θ2} (represented in the left panel of Figure 1) is the intrinsic
discrepancy δ{q1, q2} between the corresponding Bernoulli distributions,
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qi(y) = θy
i (1−θi)

1−y, y ∈ {0, 1}. It may be appreciated that, specially near
the extremes, the behaviour of the intrinsic discrepancy is rather different
from that of the conventional quadratic loss c (θ1 − θ2)

2 (represented in
the right panel of Figure 1 with c chosen to preserve the vertical scale).

As a direct consequence of the information-theoretical interpretation of
the Kullback-Leibler directed divergences (Kullback, 1968, Ch. 1), the in-
trinsic discrepancy δ{p1, p2} is a measure, in natural information units or nits
(Boulton and Wallace, 1970), of the minimum amount of expected informa-
tion, in Shannon (1948) sense, required to discriminate between p1 and p2.
If base 2 logarithms were used instead of natural logarithms, the intrinsic
discrepancy would be measured in binary units of information (bits).

The quadratic loss �{θ1, θ2} = (θ1 − θ2)
2, often (over)used in statistical in-

ference as measure of the discrepancy between two distributions p(x | θ1) and
p(x | θ2) of the same parametric family {p(x | θ), θ ∈ Θ}, heavily depends on
the parametrization chosen. As a consequence, the corresponding point estim-
ate, the posterior expectation is not coherent under one-to-one transforma-
tions of the parameter. For instance, under quadratic loss, the “best” estim-
ate of the logarithm of some positive physical magnitude is not the logarithm
of the “best” estimate of such magnitude, a situation hardly acceptable by
the scientific community. In sharp contrast to conventional loss functions, the
intrinsic discrepancy is invariant under one-to-one reparametrizations. Some
important consequences of this fact are summarized below.

Let M ≡ {p(x |θ), x ∈ X , θ ∈ Θ} be a family of probability densities,
with no nuisance parameters, and let θ̃ ∈ Θ be a possible point estimate of
the quantity of interest θ. The intrinsic discrepancy δ{θ̃, θ} = δ{px | θ̃, px |θ}
between the estimated model and the true model measures, as a function
of θ, the loss which would be suffered if model p(x | θ̃) were used as a proxy
for model p(x |θ). Notice that this directly measures how different the two
models are, as opposed to measuring how different their labels are, which is
what conventional loss functions—like the quadratic loss—typically do. As
a consequence, the resulting discrepancy measure is independent of the par-
ticular parametrization used; indeed, δ{θ̃, θ} provides a natural, invariant
loss function for estimation, the intrinsic loss. The intrinsic estimate is that
value θ∗ which minimizes d(θ̃ |x) =

∫
Θ δ{θ̃, θ} p(θ |x) dθ, the posterior ex-

pected intrinsic loss, among all θ̃ ∈ Θ. Since δ{θ̃, θ} is invariant under re-
parametrization, the intrinsic estimate of any one-to-one transformation of θ,
φ = φ(θ), is simply φ∗ = φ(θ∗) (Bernardo and Juárez, 2003).

The posterior expected loss function d(θ̃ |x) may further be used to define
posterior intrinsic p-credible regions Rp = {θ̃; d(θ̃ |x) < k(p)}, where k(p)
is chosen such that Pr[θ ∈ Rp |x] = p. In contrast to conventional highest
posterior density (HPD) credible regions, which do not remain HPD under
one-to-one transformations of θ, these lowest posterior loss (LPL) credible
regions remain LPL under those transformations.
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Similarly, if θ0 is a parameter value of special interest, the intrinsic dis-
crepancy δ{θ0, θ} = δ{px |θ0 , px |θ} provides, as a function of θ, a meas-
ure of how far the particular density p(x |θ0) (often referred to as the null
model) is from the assumed model p(x |θ), suggesting a natural invariant
loss function for precise hypothesis testing. The null model p(x |θ0) will be
rejected if the corresponding posterior expected loss (called the intrinsic stat-
istic) d(θ0 |x) =

∫
Θ δ{θ0, θ} p(θ |x) dθ, is too large. As one should surely

require, for any one-to-one transformation φ = φ(θ), testing whether of not
data are compatible with θ = θ0 yields precisely the same result as testing
φ = φ0 = φ(θ0) (Bernardo and Rueda, 2002).

These ideas, extended to include the possible presence of nuisance paramet-
ers, will be further analyzed in Section 4.

Definition 2 (Intrinsic convergence) A sequence of probability distribu-
tions specified by their density functions {pi(x)}∞i=1 is said to converge intrins-
ically to a probability distribution with density p(x) whenever the sequence of
their intrinsic discrepancies {δ(pi, p)}∞i=1 converges to zero.

Example 2 Poisson approximation to a Binomial distribution. The in-
trinsic discrepancy between a Binomial distribution with probability func-
tion Bi(r |n, θ) and its Poisson approximation Po(r |nθ), is

δ{Bi, Po |n, θ} =
n∑

r=0

Bi(r |n, θ) log
Bi(r |n, θ)

Po(r |nθ)
,

since the second sum in Definition 1 diverges. It may easily be verified
that limn→∞ δ{Bi, Po |n, λ/n} = 0 and limθ→0 δ{Bi, Po |λ/θ, θ} = 0; thus,
as one would expect from standard probability theory, the sequences of
Binomials Bi(r |n, λ/n) and Bi(r |λ/θi, θi) both intrinsically converge to
a Poisson Po(r |λ) when n → ∞ and θi → 0, respectively.

Figure 2 Intrinsic discrepancy δ{Bi,Po |n, θ} between a Binomial Bi(r |n, θ)
and a Poisson Po(r |nθ) as a function of θ, for n = 1, 3, 5 and ∞.

0.1 0.2 0.3 0.4 0.5
Θ

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
∆ �Bi, Po � n, Θ �

n�1

n�3
n�5
n��

However, if one is interest in approximatiing a binomial Bi(r |n, θ) by a
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Poisson Po(r |nθ) the rôles of n and θ are far from similar: the important
condition for the Poisson approximation to the Binomial to work is that
the value of θ must be small, while the value of n is largely irrelevant.
Indeed, (see Figure 2), limθ→0 δ{Bi, Po |n, θ} = 0, for all n > 0, but
limn→∞ δ{Bi, Po |n, θ} = 1

2 [−θ− log(1− θ)] for all θ > 0. Thus, arbitrarily
good approximations are possible with any n, provided θ is sufficiently
small. However, for fixed θ, the quality of the approximation cannot im-
prove over a certain limit, no matter how large n might be. For example,
δ{Bi, Po | 3, 0.05} = 0.00074 and δ{Bi, Po | 5000, 0.05} = 0.00065, both
yielding an expected log-probability ratio of about 0.0007. Thus, for all
n ≥ 3 the Binomial distribution Bi(r |n, 0.05) is quite well approximated
by the Poisson distribution Po(r | 0.05n), and the quality of the approx-
imation is very much the same for any value n.

Many standard approximations in probability theory may benefit from an
analysis similar to that of Example 2. For instance, the sequence of Student
distributions {St(x |µ, σ, ν)}∞ν=1 converges intrinsically to the normal distribu-
tion N(x |µ, σ) with the same location and scale parameters, and the discrep-
ancy δ(ν) = δ{St(x |µ, σ, ν), N(x |µ, σ)} (which only depends on the degrees
of freedom ν) is smaller than 0.001 when ν > 40. Thus approximating a Stu-
dent with more than 40 degrees of freedom by a normal yields an expected
log-density ratio smaller than 0.001, suggesting quite a good approximation.

As mentioned before, a reference prior is often an improper prior function.
Justification of its use as a formal prior in Bayes theorem to obtain a reference
posterior necessitates proving that the reference posterior thus obtained is an
appropriate limit of a sequence of posteriors obtained from proper priors.

Theorem 1 Consider a model M ≡ {p(x |ω), x ∈ X , ω ∈ Ω}. If π(ω) is a
strictly positive improper prior, {Ωi}∞i=1 is an increasing sequence of subsets of
the parameter space which converges to Ω and such that

∫
Ωi

π(ω) dω < ∞, and
πi(ω) is the renormalized proper density obtained by restricting π(ω) to Ωi,
then, for any data set x ∈ X , the sequence of the corresponding posteriors
{πi(ω |x)}∞i=1 converges intrinsically to the posterior π(ω |x) ∝ p(x |ω) π(ω)
obtained by formal use of Bayes theorem with the improper prior π(ω).

However, to avoid possible pathologies, a stronger form of convergence is
needed; for a sequence of proper priors {πi}∞i=1 to converge to a (possibly im-
proper) prior function π, it will further be required that the predicted intrinsic
discrepancy between the corresponding posteriors converges to zero. For a
motivating example, see Berger and Bernardo (1992c, p. 43), where the model

{
p(x | θ) = 1

3 , x ∈ {[ θ
2 ], 2θ, 2θ + 1}, θ ∈ {1, 2, . . .}

}
,

where [u] denotes the integer part of u (and [12 ] is separately defined as 1),
originally proposed by Fraser, Monette and Ng (1985), is reanalysed.
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Definition 3 (Permissible prior function) A positive function π(ω) is an
permissible prior function for model M ≡ {p(x |ω), x ∈ X , ω ∈ Ω} if for all
x ∈ X one has

∫
Ω p(x |ω) π(ω) dω < ∞, and for some increasing sequence

{Ωi}∞i=1 of subsets of Ω, such that limi→∞ Ωi = Ω, and
∫
Ωi

π(ω) dω < ∞,

lim
i→∞

∫
X

pi(x) δ{πi(ω |x), π(ω |x)} dx = 0,

where πi(ω) is the renormalized restriction of π(ω) to Ωi, πi(ω |x) is the cor-
responding posterior, pi(x) =

∫
Ωi

p(x |ω) πi(ω) dω is the corresponding pre-
dictive, and π(ω |x) ∝ p(x |ω) π(ω).

In words, π(ω) is a permissible prior function for model M if it always
yields proper posteriors, and the sequence of the predicted intrinsic discrepan-
cies between the corresponding posterior π(ω |x) and its renormalized restric-
tions to Ωi converges to zero for some suitable approximating sequence of the
parameter space. All proper priors are permissible in the sense of Definition 3,
but improper priors may or may not be permissible, even if they seem to be
arbitrarily close to proper priors.

Example 3 Exponential model. Let x = {x1, . . . , xn} be a random sample
from p(x | θ) = θe−θ x, θ > 0, so that p(x | θ) = θne−θ t, with sufficient
statistic t =

∑n
j=1 xj. Consider a positive function π(θ) ∝ θ−1, so that

π(θ | t) ∝ θn−1e−θ t, a gamma density Ga(θ |n, t), which is a proper dis-
tribution for all possible data sets. Take now some sequence of pairs of
positive real numbers {ai, bi}, with ai < bi, and let Θi = (ai, bi); the in-
trinsic discrepancy between π(θ | t) and its renormalized restriction to Θi,
denoted πi(θ | t), is δi(n, t) = k{π(θ | t) |πi(θ | t)} = log [ci(n, t)], where
ci(n, t) = Γ(n)/{Γ(n, ai t)−Γ(n, bi t)}. The renormalized restriction of π(θ)
to Θi is πi(θ) = θ−1/ log[bi/ai], and the corresponding (prior) predictive
of t is pi(t |n) = c−1

i (n, t) t−1/ log[bi/ai]. It may be verified that, for all
n ≥ 1, the expected intrinsic discrepancy

∫ ∞
0 pi(t |n) δi(n, t) dt converges

to zero as i → ∞. Hence, all positive functions of the form π(θ) ∝ θ−1 are
permissible priors for the parameter of an exponential model.

Example 4 Mixture model. Let x = {x1, . . . , xn} be a random sample
from M ≡ {1

2N(x | θ, 1) + 1
2N(x | 0, 1), x ∈ IR, θ ∈ IR}. It is easily verified

that the likelihood function p(x | θ) =
∏n

j=1 p(xj | θ) is always bounded
below by a strictly positive function of x. Hence,

∫ ∞
−∞ p(x | θ) dθ = ∞

for all x, and the “natural” objective uniform prior function π(θ) = 1 is
obviously not permissible, although it may be pointwise arbitrarily well
approximated by a sequence of proper “flat” priors.

Definition 4 (Intrinsic association) The intrinsic association αxy between
two random vectors x ∈ X and y ∈ Y with joint density p(x, y) and mar-
ginals p(x) and p(y) is the intrinsic discrepancy αxy = δ{px y, pxpy} between
their joint density and the product of their marginals.
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The intrinsic association is a non-negative invariant measure of association
between two random vectors, which vanishes if they are independent, and
tends to infinity as y and x approach a functional relationship. If their joint
distribution is bivariate normal, it reduces to −1

2 log(1−ρ2), a simple function
of their coefficient of correlation ρ.

The concept of intrinsic association extends that of mutual information; see
e.g., Cover and Thomas (1991), and references therein. Important differences
arise in the context of contingency tables, where both x and y are discrete
random variables which may only take a finite number of different values.

Definition 5 (Expected intrinsic information) The expected intrinsic in-
formation I{pω |M} from one observation of M ≡ {p(x |ω), x ∈ X , ω ∈ Ω}
about the value of ω ∈ Ω when the prior density is p(ω), is the intrinsic asso-
ciation αxω = δ{px ω, px pω} between x and ω, where p(x, ω) = p(x |ω) p(ω),
and p(x) =

∫
Ω p(x |ω) p(ω) dω.

For a fixed model M, the expected intrinsic information I{pω |M} is a
concave, positive functional of the prior p(ω). Under appropriate regular-
ity conditions, in particular when data consists of a large random sample
x = {y1, . . . ,yn} from some model {p(y |ω), y ∈ Y , ω ∈ Ω}, one has

∫ ∫
X×Ω

[p(x)p(ω) + p(x, ω)] log
p(x) p(ω)

p(x, ω)
dx dω ≥ 0 (8)

so that k{px pω | px ω} ≤ k{px ω | px pω}. If this is the case,

I{pω |M}= δ{px ω, px pω} = k{px pω | px ω}

=
∫ ∫

X×Ω
p(x, ω) log

p(x, ω)

p(x) p(ω)
dx dω (9)

=
∫
Ω

p(ω)
∫

X
p(x |ω) log

p(ω |x)

p(ω)
dx dω (10)

= H[pω] −
∫

X
p(x) H[pω |x] dx, (11)

where H[pω] = − ∫
Ω p(ω) log p(ω) dω is the entropy of pω, and the expected

intrinsic information reduces to the Shannon’s expected information (Shan-
non, 1948; Lindley, 1956; Stone, 1959; de Waal and Groenewald, 1989; Clarke
and Barron, 1990).

For any fixed model M, the intrinsic information I{pω |M} measures, as
a functional of the prior pω, the amount of information about the value of ω
which one observation x ∈ X may be expected to provide. The stronger
the prior knowledge described by pω, the smaller the information the data
may be expected to provide; conversely, weak initial knowledge about ω will
correspond to large expected information from the data. This is the intuitive
basis for the definition of a reference prior.
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3 Reference distributions

Let x be one observation from model M ≡ {p(x |ω), x ∈ X , ω ∈ Ω}, and
let θ = θ(ω) ∈ Θ be some vector of interest, whose posterior distribution is
required. Notice that x represents the complete available data; often, but not
always, this will consist of a random sample x = {y1, . . . ,yn} of fixed size n
from some simpler model. Let P be the class of candidate priors for ω, defined
as those sufficiently regular priors which are compatible with whatever agreed
“objective” initial information about the value of ω one is willing to assume.
A permissible prior function πθ(ω |M,P) is desired which may be expected
to have a minimal effect (in a sense to be made precise) among all priors in P ,
on the posterior inferences about θ = θ(ω) which could be derived given data
generated from M. This will be named a reference prior function of ω for the
quantity of interest θ, relative to model M and class P of candidate priors, and
will be denoted by πθ(ω |M,P). The reference prior function πθ(ω |M,P)
will then be used as a formal prior density to derive the required reference
posterior distribution of the quantity of interest, π(θ |x,M,P), via Bayes
theorem and the required probability operations.

This section contains the definition and basic properties of reference dis-
tributions. The ideas are first formalized in one-parameter models, and then
extended to multiparameter situations. Special attention is devoted to restric-
ted reference distributions, where the class of candidate priors P consists of
those which satisfy some set of assumed conditions. This provides a continuous
collection of solutions, ranging from situations with no assumed prior informa-
tion on the quantity of interest, when P is the class P0 of all sufficiently regular
priors, to situations where accepted prior knowledge is sufficient to specify a
unique prior p0(ω), so that πθ(ω |M,P) = p0(θ), the situation commonly
assumed in Bayesian subjective analysis.

3.1 One parameter models

Let θ ∈ Θ ⊂ IR be a real-valued quantity of interest, and let available
data x consist of one observation from model M ≡ {p(x | θ), x ∈ X , θ ∈ Θ},
so that there are no nuisance parameters. A permissible prior function π(θ) =
π(θ |M,P) in a class P is desired with a minimal expected effect on the
posteriors of θ which could be obtained after data x ∈ X generated from M
have been observed.

Let x(k) = {x1, . . . ,xk} consist of k conditionally independent (given θ)
observations from M, so that x(k) consists of one observation from the product
model Mk = {∏k

j=1 p(xj | θ), xj ∈ X , θ ∈ Θ }. Let pθ be a prior distribution
for the quantity of interest, and consider the intrinsic information about θ,
I{pθ |Mk}, which could be expected from the vector x(k) ∈ X k. For any
sufficiently regular prior pθ, the posterior distribution of θ would concentrate
on its true value as k increases and therefore, as k → ∞, the true value of θ
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would get to be precisely known. Thus, as k → ∞, the functional I{pθ |Mk}
will approach a precise measure of the amount of missing information about θ
which corresponds to the prior pθ. It is natural to define the reference prior as
that prior function πθ = π(θ |M,P) which maximizes the missing information
about the value of θ within the class P of candidate priors.

Under regularity conditions, the expected intrinsic information I{pθ |Mk}
becomes, for large k, Shannon’s expected information and hence, using (11),

I{pθ |Mk} = H[pθ] −
∫
Xk

p(x(k)) H[pθ |x(k) ] dx(k), (12)

where H[pθ] = − ∫
Θ p(θ) log p(θ) dθ, is the entropy of pθ. It follows that, when

the parameter space Θ = {θ1, . . . , θm} is finite, the missing information which
corresponds to any strictly positive prior pθ is, for any model M,

lim
k→∞

I{pθ |Mk} = H[pθ] = −
∑m

j=1
p(θj) log p(θj), (13)

since, as k → ∞, the discrete posterior probability function p(θ |x(k)) con-
verges to a degenerate distribution with probability one on the true value of θ
and zero on all others, and thus, the posterior entropy H[pθ |x(k) ] converges
to zero. Hence, in finite parameter spaces, the reference prior for the para-
meter does not depend on the precise form of the model, and it is precisely
that which maximizes the entropy within the class P of candidate priors. This
was the solution proposed by Jaynes (1968), and it is often used in mathem-
atical physics. In particular, if the class of candidate priors is the class P0

of all strictly positive probability distributions, the reference prior for θ is
a uniform distribution over Θ, the “noninformative” prior suggested by the
old insufficient reason argument (Laplace, 1812). For further information on
the concept of maximum entropy, see Jaynes (1968, 1982, 1985, 1989), Akaike
(1977), Csiszár (1985, 1991), Clarke and Barron (1994), Grünwald and Dawid
(2004), and references therein.

In the continuous case, however, I{pθ |Mk} typically diverges as k → ∞,
since an infinite amount of information is required to know exactly the value
of a real number. A general definition of the reference prior (which includes
the finite case as a particular case), is nevertheless possible as an appropriate
limit, when k → ∞, of the sequence of priors maximizing I{pθ |Mk} within
the class P . Notice that this limiting procedure is not some kind of asymptotic
approximation, but an essential element of the concept of a reference prior.
Indeed, the reference prior is defined to maximize the missing information
about the quantity of interest which could be obtained by repeated sampling
from M (not just the information expected from a finite data set), and this
is precisely achieved by maximizing the expected information from the arbit-
rarily large data set which could be obtained by unlimited repeated sampling
from the assumed model.
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Since I{pθ |Mk} is only defined for proper priors, and I{pθ |Mk} is not
guaranteed to attain its maximum at a proper prior, the formal definition
of a reference prior is stated as a limit, as i → ∞, of the sequence of solu-
tions obtained for restrictions {Θi}∞i=1 of the parameter space chosen to ensure
that the maximum of I{pθ |Mk} is actually obtained at a proper prior. The
definition below (Berger, Bernardo and Sun, 2005) generalizes those in Ber-
nardo (1979b) and Berger and Bernardo (1992c), and addresses the problems
described in Berger, Bernardo and Mendoza (1989).

Definition 6 (One-parameter reference priors) Consider the one-para-
meter model M ≡ {p(x | θ), x ∈ X , θ ∈ Θ ⊂ IR}, and let P be a class of
candidate priors for θ. The positive function π(θ) = π(θ |M,P) is a reference
prior for model M given P if it is a permissible prior function such that, for
some increasing sequence {Θi}∞i=1 with limi→∞ Θi = Θ and

∫
Θi

π(θ) dθ < ∞,

lim
k→∞

{I{πi |Mk} − I{pi |Mk}} ≥ 0, for all Θi, for all p ∈ P,

where πi(θ) and pi(θ) are the renormalized restrictions of π(θ) and p(θ) to Θi.

Notice that Definition 6 involves two rather different limiting processes.
The limiting process of the Θi’s towards the whole parameter space Θ is only
required to guarantee the existence of the expected informations; this may
often (but not always) be avoided if the parameter space is (realistically)
chosen to be some finite interval [a, b]. On the other hand, the limiting process
as k → ∞ is an essential part of the definition. Indeed, the reference prior is
defined as that prior function which maximizes the missing information, which
is the expected discrepancy between prior knowledge and perfect knowledge;
but perfect knowledge is only approached asymptotically, as k → ∞.

Definition 6 implies that reference priors only depend on the asymptotic be-
haviour of the assumed model, a feature which greatly simplifies their actual
derivation; to obtain a reference prior π(θ |M,P) for the parameter θ of model
M ≡ {p(x | θ), x ∈ X , θ ∈ Θ}, it is both necessary and sufficient to establish
the asymptotic behaviour of its posterior distribution under (conceptual) re-
peated sampling from M, that is the limiting form, as k → ∞, of the posterior
density (or probability function) π(θ |x(k)) = π(θ |x1, . . . ,xk).

As one would hope, Definition 6 yields the maximum entropy result in the
case where the parameter space is finite and the quantity of interest is the
actual value of the parameter:

Theorem 2 (Reference priors with finite parameter space) Consider
a model M ≡ {p(x | θ), x ∈ X , θ ∈ Θ}, with a finite parameter space
Θ = {θ1, . . . , θm} and such that, for all pairs θi and θj, δ{px | θi

, px | θj
} > 0,

and let P be a class of probability distributions over Θ. Then the reference
prior for the parameter θ is
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πθ(θ |M,P) = arg max
pθ∈P

H{pθ},

where pθ = {p(θ1), p(θ2), . . . , p(θm)} and H{pθ} = −∑m
j=1 p(θj) log p(θj) is the

entropy of pθ. In particular, if the class of candidate priors for θ is the set P0

of all strictly positive probability distributions over Θ, then the reference prior
is the uniform distribution πθ(θ |M,P0) = {1/m, . . . , 1/m}.
Theorem 2 follows immediately from the fact that, if the intrinsic discrepancies
δ{px | θi

, px | θj
} are all positive (and hence the m models p(x | θi) are all distin-

guishable from each other), then the posterior distribution of θ asymptotically
converges to a degenerate distribution with probability one on the true value
of θ (see e.g., Bernardo and Smith (1994, Sec. 5.3) and references therein).
Such asymptotic posterior has zero entropy and thus, by Equation 12, the
missing information about θ when the prior is pθ does not depend on M, and
is simply given by the prior entropy, H{pθ}. �

Consider now a model M indexed by a continuous parameter θ ∈ Θ ⊂ IR.
If the family of candidate priors consist of the class P0 of all continuous
priors with support Θ, then the reference prior, π(θ |M,P0) may be ob-
tained as the result of an explicit limit. This provides a relatively simple
procedure to obtain reference priors in models with one continuous para-
meter. Moreover, this analytical procedure may easily be converted into a
programmable algorithm for numerical derivation of reference distributions.
The results may conveniently be described in terms of any asymptotically suf-
ficient statistic, i.e., a function tk = tk(x

(k)) such that, for all θ and for all x(k),
limk→∞[p(θ |x(k))/p(θ | tk)] = 1.

Obviously, the entire sample x(k) is sufficient (and hence asymptotically
sufficient), so there is no loss of generality in framing the results in terms of
asymptotically sufficient statistics.

Theorem 3 (Explicit form of the reference prior) Consider the model
M ≡ {p(x | θ), x ∈ X , θ ∈ Θ ⊂ IR}, and let P0 be the class of all continuous
priors with support Θ. Let x(k) = {x1, . . . ,xk} consist of k independent obser-
vations from M, so that p(x(k) | θ) =

∏k
j=1 p(xj | θ), and let tk = tk(x

(k)) ∈ T
be any asymptotically sufficient statistic. Let h(θ) be a continuous strictly pos-
itive function such that, for sufficiently large k,

∫
Θ p(tk | θ) h(θ) dθ < ∞, and

define

fk(θ) = exp
{ ∫

T
p(tk | θ) log

(
p(tk | θ) h(θ)∫

Θ p(tk | θ) h(θ) dθ

)
dtk

}
, and (14)

f(θ) = lim
k→∞

fk(θ)

fk(θ0)
, (15)

where θ0 is any interior point of Θ. If f(θ) is a permissible prior function
then, for any c > 0, π(θ |M,P0) = c f(θ) is a reference prior.
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Intuitively, Theorem 3 states that the reference prior π(θ |M) relative to
model M only depends on the asymptotic behaviour of the model and that,
with no additional information to restrict the class of candidate priors, it has
(from Equation 14), the form

π(θ |M,P0) ∝ exp
{
Etk | θ

[
log p(θ | tk)

] }
, (16)

where p(θ | tk) is any asymptotic approximation to the posterior distribution
of θ, and the expectation is taken with respect to the sampling distribution
of the relevant asymptotically sufficient statistic tk = tk(x

(k)). A heuristic
derivation of Theorem 3 is provided below. For a precise statement of the
regularity conditions and a formal proof, see Berger, Bernardo and Sun (2005).

Under fairly general regularity conditions, the intrinsic expected informa-
tion reduces to Shannon’s expected information when k → ∞. Thus, starting
from (10), the amount of information about θ to be expected from Mk when
the prior is p(θ) may be rewritten as I{pθ |Mk} =

∫
Θ p(θ) log[hk(θ)/p(θ)] dθ,

where hk(θ) = exp{∫
T p(tk | θ) log p(θ | tk) dtk}. If ck =

∫
Θ hk(θ) dθ < ∞, then

hk(θ) may be renormalized to get the proper density hk(θ)/ck, and I{pθ |Mk}
may be rewritten as

I{pθ |Mk} = log ck −
∫
Θ

p(θ) log
p(θ)

hk(θ)/ck

dθ. (17)

But the integral in (17) is the Kullback-Leibler directed divergence of hk(θ)/ck

from p(θ), which is non-negative, and it is zero iff p(θ) = hk(θ)/ck almost
everywhere. Thus, I{pθ |Mk} would be maximized by a prior πk(θ) which
satisfies the functional equation

πk(θ) ∝ hk(θ) = exp
{ ∫

T
p(tk | θ) log πk(θ | tk) dtk

}
, (18)

where πk(θ | tk) ∝ p(tk | θ) πk(θ) and, therefore, the reference prior should be
a limiting form, as k → ∞ of the sequence of proper priors given by (18).
This only provides an implicit solution, since the posterior density πk(θ | tk) in
the right hand side of (18) obviously depends on the prior πk(θ); however, as
k → ∞, the posterior πk(θ | tk) will approach its asymptotic form which, under
the assumed conditions, is independent of the prior. Thus, the posterior dens-
ity in (18) may be replaced by the posterior π0(θ | tk) ∝ p(tk | θ) h(θ) which
corresponds to any fixed prior, say π0(θ) = h(θ), to obtain an explicit expres-
sion for a sequence of priors,

πk(θ) ∝ fk(θ) = exp
{ ∫

T
p(tk | θ) log π0(θ | tk) dtk

}
, (19)

whose limiting form will still maximize the missing information about θ. The
preceding argument rests however on the assumption that (at least for suffi-
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ciently large k) the integrals in Θ of fk(θ) are finite, but those integrals may
well diverge. The problem is solved by considering an increasing sequence
{Θi}∞i=1 of subsets of Θ which converges to Θ and such that, for all i and
sufficiently large k, cik =

∫
Θi

fk(θ) dθ < ∞, so that the required integrals are
finite. An appropriate limiting form of the double sequence πik(θ) = fk(θ)/cik,
θ ∈ Θi will then approach the required reference prior.

Such a limiting form is easily established; indeed, let πik(θ |x), θ ∈ Θi be
the posterior which corresponds to πik(θ) and, for some interior point θ0 of all
the Θi’s, consider the limit

lim
k→∞

πik(θ |x)

πik(θ0 |x)
= lim

k→∞

p(x | θ) fk(θ)

p(x | θ0) fk(θ0)
∝ p(x | θ) f(θ), (20)

where f(θ) = limk→∞ fk(θ)/fk(θ0), which does not depend on the initial
function h(θ) (and therefore h(θ) may be chosen by mathematical conveni-
ence). It follows from (20) that, for any data x, the sequence of posteriors
πik(θ |x) which maximize the missing information will approach the posterior
π(θ |x) ∝ p(x | θ) f(θ) obtained by formal use of Bayes theorem, using f(θ)
as the prior. This completes the heuristic justification of Theorem 3. �

3.2 Main properties

Reference priors enjoy many attractive properties, as stated below. For de-
tailed proofs, see Bernardo and Smith (1994, Secs. 5.4 and 5.6).

In the frequently occurring situation where the available data consist of a
random sample of fixed size n from some model M (so that the assumed
model is Mn), the reference prior relative to Mn is independent of n, and
may simply be obtained as the reference prior relative to M, assuming the
later exists.

Theorem 4 (Independence of sample size) If data x = {y1, . . . ,yn} con-
sists of a random sample of size n from model M ≡ {p(y | θ), y ∈ Y , θ ∈ Θ},
with reference prior πθ(θ |M,P) relative to the class of candidate priors P,
then, for any fixed sample size n, the reference prior for θ relative to P is
πθ(θ |Mn,P) = πθ(θ |M,P).

This follows from the additivity of the information measure. Indeed, for any
sample size n and number of replicates k, I{pθ |Mnk} = n I{pθ |Mk}. �

Note, however, that Theorem 4 requires x to be a random sample from the
assumed model. If the model entails dependence between the observations (as
in time series, or in spatial models) the reference prior may well depend on the
sample size; see, for example, Berger and Yang (1994), and Berger, de Oliveira
and Sansó (2001).

The possible dependence of the reference prior on the sample size and, more
generally, on the design of the experiment highlights the fact that a reference
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prior is not a description of (personal) prior beliefs, but a possible consensus
prior for a particular problem of scientific inference. Indeed, genuine prior
beliefs about some quantity of interest should not depend on the design of
the experiment performed to learn about its value (although they will typ-
ically influence the choice of the design), but a prior function to be used as
a consensus prior to analyse the results of an experiment may be expected
to depend on its design. Reference priors, which by definition maximize the
missing information which repeated observations from a particular experiment
could possibly provide, generally depend on the design of that experiment.

As one would hope, if the assumed model M has a sufficient statistic
t = t(x), the reference prior relative to M is the same as the reference prior
relative to the equivalent model derived from the sampling distribution of t:

Theorem 5 (Compatibility with sufficient statistics) Consider a model
M ≡ {p(x | θ), x ∈ X , θ ∈ Θ} with sufficient statistic t = t(x) ∈ T , and
let Mt ≡ {p(t | θ), t ∈ T , θ ∈ Θ} be the corresponding model in terms of t.
Then, for any class of candidate priors P, the reference prior for θ relative to
model M is πθ(θ |M,P) = πθ(θ |Mt,P).

Theorem 5 follows from the fact that the expected information is invariant
under such transformation, so that, for all k, I{pθ |Mk} = I{pθ |Mk

t}. �
When data consist of a random sample of fixed size from some model, and

there exists a sufficient statistic of fixed dimensionality, Theorems 3, 4 and
5 may be combined for an easy, direct derivation of the reference prior, as
illustrated below.

Example 5 Exponential model, continued. Let x = {x1, . . . , xn} be a ran-
dom sample of size n from an exponential distribution. By Theorem 4, to
obtain the corresponding reference prior it suffices to analyse the beha-
viour, as k → ∞, of k replications of the model which corresponds to a
single observation, M ≡ {θ e−θ y, y > 0, θ > 0}, as opposed to k replica-
tions of the actual model for data x, Mn ≡ {∏n

j=1 θ e−θ xj , xj > 0, θ > 0}.
Thus, consider y(k) = {y1, . . . , yk}, a random sample of size k from the

single observation model M; clearly tk =
∑k

j=1 yj is sufficient, and the
sampling distribution of tk has a gamma density p(tk | θ) = Ga(tk | k, θ).
Using a constant for the arbitrary function h(θ) in Theorem 3, the corres-
ponding posterior has a gamma density Ga(θ | k + 1, tk) and, thus,

fk(θ) = exp
[ ∫ ∞

0
Ga(tk | k, θ) log

{
Ga(θ | k + 1, tk)

}
dtk

]
= ck θ−1,

where ck is a constant which does not contain θ. Therefore, using (15),
f(θ) = θ0/θ and, since this is a permissible prior function (see Example 3),
the unrestricted reference prior (for both the single observation model M
and the actual model Mn) is π(θ |Mn,P0) = π(θ |M,P0) = θ−1.
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Parametrizations are essentially arbitrary. As one would hope, reference pri-
ors are coherent under reparametrization in the sense that if φ = φ(θ) is a
one-to-one mapping of Θ into Φ = φ(Θ) then, for all φ ∈ Φ,

(i) πφ(φ) = πθ{θ(φ)}, if Θ is discrete;

(ii) πφ(φ) = πθ{θ(φ)} | ∂θ(φ)/∂φ | , if Θ is continuous;

More generally, reference posteriors are coherent under piecewise invertible
transformations φ = φ(θ) of the parameter θ in the sense that, for all x ∈ X ,
the reference posterior for φ derived from first principles, π(φ |x), is precisely
the same as that which could be obtained from π(θ |x) by standard probability
calculus:

Theorem 6 (Consistency under reparametrization) Consider a model
M ≡ {p(x | θ), x ∈ X , θ ∈ Θ} and let φ(θ) be a piecewise invertible trans-
formation of θ. For any data x ∈ X , the reference posterior density of φ,
π(φ |x), is that induced by the reference posterior density of θ, π(θ |x).

If φ(θ) is one-to-one, Theorem 6 follows immediately from the fact that the
expected information is also invariant under such transformation, so that, for
all k, I{pθ |Mk

θ} = I{pψ |Mk
ψ}; this may also be directly verified using The-

orems 2 and 3. Suppose now that φ(θ) = φj(θ), θ ∈ Θj, where the Θj’s form a
partition of Θ, such that each of the φj(θ)’s is one-to-one in Θj. The reference
prior for θ only depends on the asymptotic posterior of θ which, for sufficiently
large samples, will concentrate on that subset Θj of the parameter space Θ
to which the true value of θ belongs. Since φ(θ) is one-to-one within Θj, and
reference priors are coherent under one-to-one parametrizations, the general
result follows. �

An important consequence of Theorem 6 is that the reference prior of any
location parameter, and the reference prior of the logarithm of any scale para-
meter are both uniform:

Theorem 7 (Location models and scale models) Consider a location
model M1, so that for some function f1, M1 ≡ {f1(x − µ), x ∈ IR, µ ∈ IR},
and let P0 be the class of all continuous strictly positive priors on IR; then, if
it exists, a reference prior for µ is of the form π(µ |M1,P0) = c. Moreover,
if M2 is a scale model, M2 ≡ {σ−1f2(x/σ), x > 0, σ > 0}, and P0 is the class
of all continuous strictly positive priors on (0,∞), then a reference prior for σ,
if it exists, is of the form π(σ |M2,P0) = c σ−1.

Let π(µ) be the reference prior which corresponds to model M1; the changes
y = x + α and θ = µ + α produce {f1(y − θ), y ∈ Y , θ ∈ IR}, which is again
model M1. Hence, using Theorem 6, π(µ) = π(µ+α) for all α and, therefore,
π(µ) must be constant. Moreover, the obvious changes y = log x and φ = log σ
transform the scale model M2 into a location model; hence, π(φ) = c and,
therefore, π(σ) ∝ σ−1. �
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Example 6 Cauchy data. Let x = {x1, . . . , xn} be a random sample from
a Cauchy distribution with unknown location µ and known scale σ = 1, so
that p(xj |µ) ∝ [1 + (xj − µ)2]−1. Since this is a location model, the refer-
ence prior is uniform and, by Bayes theorem, the corresponding reference
posterior is

π(µ |x) ∝
∏n

j=1

[
1 + (xj − µ)2

]−1
, µ ∈ IR.

Using the change of variable theorem, the reference posterior of (say) the
one-to-one transformation φ = eµ/(1+eµ) mapping the original parameter
space IR into (0, 1), is π(φ |x) = π(µ(φ) |x)|∂µ/∂φ|, φ ∈ (0, 1). Similarly,
the reference posterior π(ψ |x) of (say) ψ = µ2 may be derived from
π(µ |x) using standard change of variable techniques, since ψ = µ2 is a
piecewise invertible function of µ, and Theorem 6 may therefore be applied.

3.3 Approximate location parametrization

Another consequence of Theorem 6 is that, for any model with one continu-
ous parameter θ ∈ Θ, there is a parametrization φ = φ(θ) (which is unique
up to a largely irrelevant proportionality constant), for which the reference
prior is uniform. By Theorem 6 this may be obtained from the reference prior
π(θ) in the original parametrization as a function φ = φ(θ) which satisfies
the differential equation π(θ)|∂φ(θ)/∂θ|−1 = 1, that is, any solution to the
indefinite integral φ(θ) =

∫
π(θ) dθ. Intuitively, φ = φ(θ) may be expected to

behave as an approximate location parameter; this links reference priors with
the concept data translated likelihood inducing priors introduced by Box and
Tiao (1973, Sec. 1.3). For many models, good simple approximations to the
posterior distribution may be obtained in terms of this parametrization, which
often yields an exact location model.

Definition 7 (Approximate location parametrization) Consider the
model M ≡ {p(x | θ), x ∈ X , θ ∈ Θ ⊂ IR}. An approximate location paramet-
rization φ = φ(θ) for model M is one for which the reference prior is uniform.
In continuous regular models, this is given by any solution to the indefinite
integral φ(θ) =

∫
π(θ) dθ, where π(θ) = π(θ |M,P0) is the (unrestricted) ref-

erence prior for the original parameter.

Example 7 Exponential model, continued. Consider again the exponen-
tial model M ≡ {θ e−θ x, x > 0, θ > 0}. The reference prior for θ is
(see Example 5) π(θ) = θ−1; thus an approximate location parameter is
φ = φ(θ) =

∫
π(θ) dθ = log θ. Using y = − log x, this yields

My ≡
{

exp
[
− (y − φ) + e−(y−φ)

]
, y ∈ IR, φ ∈ IR

}
,

where φ is an (actually exact) location parameter.
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Example 8 Uniform model on (0, θ). Let x = {x1, . . . , xk} be a random
sample from the uniform model M ≡ {p(x | θ) = θ−1, 0 < x < θ, θ > 0},
so that tk = maxk

j=1 xj is sufficient, and the sampling distribution of tk is

the inverted Pareto p(tk | θ) = IPa(tk | k, θ−1) = k θ−k tk−1
k , if 0 < tk < θ,

and zero otherwise. Using a uniform prior for the arbitrary function h(θ)
in Theorem 3, the corresponding posterior distribution has the Pareto
density Pa(θ | k − 1, tk) = (k − 1) tk−1

k θ−k, θ > tk, and (14) becomes

fk(θ) = exp
[ ∫ θ

0
IPa(tk | k, θ−1) log Pa(θ | k − 1, tk) dtk

]
= ck θ−1,

where ck is a constant which does not contain θ. Therefore, using (15),
f(θ) = θ0/θ, π(θ |M,P0) = θ−1.

By Theorem 4, this is also the reference prior for samples of any size;
hence, by Bayes theorem, the reference posterior density of θ after, say, a
random sample x = {x1, . . . , xn} of size n has been observed is

π(θ |x) ∝
∏n

j=1
p(xj | θ) π(θ) = θ−(n+1), θ > tn,

where tn = max{x1, . . . , xn}, which is a kernel of the Pareto density
π(θ |x) = π(θ | tn) = Pa(θ |n, tn) = n (tn)n θ−(n+1), θ > tn.

The approximate location parameter is φ(θ) =
∫

θ−1 dθ = log θ. The
sampling distribution of the sufficient statistic sn = log tn in terms of
the new parameter is the reversed exponential p(sn |n, φ) = n e−n(φ−sn),
sn < φ, which explicitly shows φ as an (exact) location parameter. The
reference prior of φ is indeed uniform, and the reference posterior after x
has been observed is the shifted exponential π(φ |x) = n e−n(φ−sn), φ > sn,
which may also be obtained by changing variables in π(θ |x).

3.4 Numerical reference priors

Analytical derivation of reference priors may be technically demanding in
complex models. However, Theorem 3 may also be used to obtain a numerical
approximation to the reference prior which corresponds to any one-parameter
model M ≡ {p(x | θ), x ∈ X , θ ∈ Θ} from which random observations may
be efficiently simulated.

The proposed algorithm requires a numerical evaluation of Equation (14).
This is relatively straightforward, for simulation from the assumed model may
be used to approximate by Monte Carlo the integral in (14), and the eval-
uation of its integrand for each simulated set of data only requires (cheap)
one-dimensional numerical integration. Moderate values of k (to simulate the
asymptotic posterior) are typically sufficient to obtain a good approximation
to the reference prior π(θ |M,P0) (up to an irrelevant proportionality con-
stant). The appropriate pseudo code is quite simple:
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(1) Starting values:
Choose a moderate value for k,
Choose an arbitrary positive function h(θ), say h(θ) = 1.
Choose the number of m of samples to be simulated,

(2) For any given θ value, repeat, for j = 1, . . . , m:
Simulate a random sample {x1j, . . . ,xkj} of size k from p(x | θ).
Compute numerically the integral cj =

∫
Θ

∏k
i=1 p(xij | θ) h(θ) dθ.

Evaluate rj(θ) = log[
∏k

i=1 p(xij | θ) h(θ)/cj ].

(3) Compute π(θ) = exp[ m−1 ∑m
j=1 rj(θ) ] and store the pair {θ, π(θ)}.

(4) Repeat routines (2) and (3) for all θ values for which the pair {θ, π(θ)}
is required.

Example 9 Exponential data, continued. Figure 3 represents the exact
reference prior for the exponential model π(θ) = θ−1 (continuous line)
and the reference prior numerically calculated with the algorithm above
for nine θ values, ranging from e−3 to e3, uniformly log-spaced and rescaled
to have π(1) = 1; m = 500 samples of k = 25 observations were used to
compute each of the nine {θi, π(θi)} points.

Figure 3 Numerical reference prior for the exponential model
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If required, a continuous approximation to π(θ) may easily be obtained
from the computed points using standard interpolation techniques.

An educated choice of the arbitrary function h(θ) often leads to an analytical
form for the required posterior, p(θ |x1j, . . . ,xkj) ∝

∏k
i=1 p(xij | θ) h(θ); for

instance, this is the case in Example 9 if h(θ) is chosen to be of the form
h(θ) = θa, for some a ≥ −1. If the posterior may be analytically computed,
then the values of the rj(θ) = log[ p(θ |x1j, . . . ,xkj) ] are immediately ob-
tained, and the numerical algorithm reduces to only one Monte Carlo integ-
ration for each desired pair {θi, π(θi)}.

For an alternative, MCMC based, numerical computation method of refer-
ence priors, see Lafferty and Wasserman (2001).
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3.5 Reference priors under regularity conditions

If data consist of a random sample x = {x1, . . . , xn} of a model with one
continuous parameter θ, it is often possible to find an asymptotically suffi-
cient statistic θ̃n = θ̃n(x1, . . . , xn) which is also a consistent estimator of θ;
for example, under regularity conditions, the maximum likelihood estimator
(mle) θ̂n is consistent and asymptotically sufficient. In that case, the reference
prior may easily be obtained in terms of either (i) an asymptotic approxima-
tion π(θ | θ̃n) to the posterior distribution of θ, or (ii) the sampling distribution
p(θ̃n | θ) of the asymptotically sufficient consistent estimator θ̃n.

Theorem 8 (Reference priors under regularity conditions) Let avail-
able data x ∈ X consist of a random sample of any size from a one-parameter
model M ≡ {p(x | θ), x ∈ X , θ ∈ Θ}. Let x(k) = {x1, . . . , xk} be a random
sample of size k from model M, let θ̃k = θ̃k(x

(k)) ∈ Θ be an asymptotically
sufficient statistic which is a consistent estimator of θ, and let P0 be the class
of all continuous priors with support Θ. Let π(θ | θ̃k) be any asymptotic ap-
proximation (as k → ∞) to the posterior distribution of θ, let p(θ̃k | θ) be the
sampling distribution of θ̃k, and define

fa
k (θ) = π(θ | θ̃k)

∣∣∣∣
θ̃k=θ

, fa(θ) = lim
k→∞

fa
k (θ)

fa
k (θ0)

(21)

f b
k(θ) = p(θ̃k | θ)

∣∣∣∣
θ̃k=θ

, f b(θ) = lim
k→∞

f b
k(θ)

f b
k(θ0)

, (22)

where θ0 is any interior point of Θ. Then, under frequently occurring additional
technical conditions, fa(θ) = f b(θ) = f(θ) and, if f(θ) is a permissible prior,
any function of the form π(θ |M,P0) ∝ f(θ) is a reference prior for θ.

Since θ̃k is asymptotically sufficient, Equation (14) in Theorem 3 becomes

fk(θ) = exp
{ ∫

Θ
p(θ̃k | θ) log πk(θ | θ̃k) dθ̃k

}
.

Moreover, since θ̃k is consistent, the sampling distribution of θ̃k will concen-
trate on θ as k → ∞, fk(θ) will converge to fa

k (θ), and Equation (21) will have
the same limit as Equation (15). Moreover, for any formal prior function h(θ),

π(θ | θ̃k) =
p(θ̃k | θ) h(θ)∫

Θ p(θ̃k | θ) h(θ) dθ
.

As k → ∞, the integral in the denominator converges to h(θ̃k) and, therefore,
fa

k (θ) = π(θ | θ̃k) | θ̃k=θ converges to p(θ̃k | θ)| θ̃k=θ = f b
k(θ). Thus, both limits

in Equations (21) and (22) yield the same result, and their common value
provides an explicit expression for the reference prior. For details, and precise
technical conditions, see Berger, Bernardo and Sun (2005). �
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Example 10 Exponential model, continued. Let x = {x1, . . . , xn} be a
random sample of n exponential observations from Ex(x | θ). The mle
is θ̂n(x) = 1/x , a sufficient, consistent estimator of θ whose sampling
distribution is the inverted gamma p(θ̂n | θ) = IGa(θ̂n |nθ, n). Therefore,
f b

n(θ) = p(θ̂n | θ)| θ̂n=θ = cn/θ, where cn = e−nnn/Γ(n) and, using The-
orem 8, the reference prior is π(θ) = θ−1.

Alternatively, the likelihood function is θne−nθ/θ̂n ; hence, for any positive
function h(θ), πn(θ | θ̂n) ∝ θne−nθ/θ̂n h(θ) is an asymptotic approximation
to the posterior distribution of θ. Taking, for instance, h(θ) = 1, this
yields the gamma posterior πn(θ | θ̂n) = Ga(θ |n + 1, n/θ̂n). Consequently,
fa

n(θ) = π(θ | θ̂n) | θ̂n=θ = cn/θ, and π(θ) = θ−1 as before.

Example 11 Uniform model, continued. Let x = {x1, . . . , xn} be a ran-
dom sample of n uniform observations from Un(x | 0, θ). The mle is θ̂n(x) =
max{x1, . . . , xn}, a sufficient, consistent estimator of θ whose sampling
distribution is the inverted Pareto p(θ̂n | θ) = IPa(θ̂n |n, θ−1). Therefore,
f b

n(θ) = p(θ̂n | θ)| θ̂n=θ = n/θ and, using Theorem 8, the reference prior is
π(θ) = θ−1.

Alternatively, the likelihood function is θ−n, θ > θ̂n; hence, taking for
instance a uniform prior, the Pareto πn(θ | θ̂n) = Pa(θ |n − 1, θ̂n) is found
to be a particular asymptotic approximation of the posterior of θ; thus,
fa

n(θ) = π(θ | θ̂n) | θ̂n=θ = (n − 1)/θ, and π(θ) = θ−1 as before.

The posterior distribution of the parameter is often asymptotically normal
(see e.g., Bernardo and Smith (1994, Sec. 5.3), and references therein). In
this case, the reference prior is easily derived. The result includes (univariate)
Jeffreys (1946) and Perks (1947) rules as a particular cases:

Theorem 9 (Reference priors under asymptotic normality) Let data
consist of a random sample from model M ≡ {p(y | θ), y ∈ Y , θ ∈ Θ ⊂ IR},
and let P0 be the class of all continuous priors with support Θ. If the posterior
distribution of θ, π(θ |y1, . . . ,yn), is asymptotically normal with standard de-
viation s(θ̃n)/

√
n, where θ̃n is a consistent estimator of θ, and s(θ)−1 is a

permissible prior function, then any function of the form

π(θ |M,P0) ∝ s(θ)−1 (23)

is a reference prior. Under appropriate regularity conditions the posterior dis-
tribution of θ is asymptotically normal with variance i(θ̂n)−1/n, where θ̂n is
the mle of θ and

i(θ) = −
∫
Y

p(y | θ) ∂2

∂θ2
log p(y | θ) dy (24)

is Fisher’s information function. If this is the case, and i(θ)1/2 is a permissible
prior function, the reference prior is Jeffreys prior, π(θ |M,P0) ∝ i(θ)1/2.
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The result follows directly from Theorem 8 since, uder the assumed conditions,
fa

n(θ) = π(θ | θ̂n) | θ̂n=θ = cns(θ)
−1. Jeffreys prior is the particular case which

obtains when s(θ) = i(θ)−1/2. �
Jeffreys (1946, 1961) prior, independently rediscovered by Perks (1947), was

central in the early objective Bayesian reformulation of standard textbook
problems of statistical inference (Lindley, 1965; Zellner, 1971; Press, 1972; Box
and Tiao, 1973). By Theorem 9, this is also the reference prior in regular mod-
els with one continuous parameter, whose posterior distribution is asymptot-
ically normal. By Theorem 6, reference priors are coherently transformed un-
der one-to-one reparametrizations; hence, Theorem 9 may be typically applied
with any mathematically convenient (re)parametrization. For conditions which
preserve asymptotic normality under transformations see Mendoza (1994).

The posterior distribution of the exponential parameter in Example 10 is
asymptotically normal; thus the corresponding reference prior may also be
obtained using Theorem 9; the reference prior for the uniform parameter in
Example 11 cannot be obtained however in this way, since the relevant pos-
terior distribution is not asymptotically normal. Notice that, even under condi-
tions which guarantee asymptotic normality, Jeffreys formula is not necessarily
the easiest way to derive a reference prior; indeed, Theorem 8 often provides
a simpler alternative.

3.6 Reference priors and the likelihood principle

By definition, reference priors are a function of the entire statistical model
M ≡ {p(x | θ), x ∈ X , θ ∈ Θ}, not of the observed likelihood. Indeed, the
reference prior π(θ |M) is a mathematical description of lack of information
about θ relative to the information about θ which could be obtained by re-
peated sampling from a particular experimental design M. If the design is
changed, the reference prior may be expected to change accordingly. This is
now illustrated by comparing the reference priors which correspond to direct
and inverse sampling of Bernoulli observations.

Example 12 Binomial and negative binomial data. Let available data
x = {r, m} consist of m Bernoulli trials (with m fixed in advance) which
contain r successes, so that the assumed model is binomial Bi(r |m, θ):

M1 ≡ {p(r |m, θ) =

(
m

r

)
θr(1 − θ)m−r, r = 0, 1, . . . , m, 0 < θ < 1}

Using Theorem 9, with n = 1, m fixed, and y = r, the reference prior
for θ is the (proper) prior π(θ) ∝ θ−1/2(1 − θ)−1/2; Bayes theorem yields
the Beta reference posterior π(θ |x) = Be(θ | r +1/2, m− r +1/2). Notice
that π(θ |x) is proper, for all values of r; in particular, if r = 0, the
reference posterior is π(θ |x) = Be(θ | 1/2, m + 1/2), from which sensible
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conclusions may be reached, even though there are no observed successes.
This may be compared with the Haldane (1948) prior, also proposed by
Jaynes (1968), π(θ) ∝ θ−1(1−θ)−1, which produces an improper posterior
until at least one success and one failure are observed.

Consider, however, that data x = {r, m} consist of the sequence of
Bernoulli trials observed until r successes are obtained (with r ≥ 1 fixed
in advance), so that the assumed model is negative binomial:

M2 ≡ {p(m | r, θ) =

(
m − 1

r − 1

)
θr(1− θ)m−r, m = r, r +1, . . . 0 < θ < 1}

Using Theorem 9, with n = 1 and y = m, the reference prior for θ is
the (improper) prior π(θ) ∝ θ−1(1− θ)−1/2, and Bayes theorem yields the
Beta reference posterior π(θ |x) = Be(θ | r, m − r + 1/2), which is proper
whatever the number of observations m required to obtain r successes. No-
tice that r = 0 is not possible under this model: inverse binomial sampling
implicitly assumes that r ≥ 1 successes will occur for sure.

In reporting results, scientists are typically required to specify not only the
observed data but also the conditions under which those where obtained, the
design of the experiment, so that the data analyst has available the full specific-
ation of the model, M ≡ {p(x |ω), x ∈ X , ω ∈ Ω}. To carry out a reference
analysis of the data, such a full specification (that is, including the experiment
design) is indeed required. The reference prior π(ω |M,P) is proposed as a
consensus prior to analyse data associated to a particular design M (and un-
der any agreed assumptions about the value of ω which might be encapsulated
in the choice of P).

The likelihood principle (Berger and Wolpert, 1988) says that all evidence
about an unknown quantity ω, which is obtained from an experiment which
has produced data x, is contained in the likelihood function p(x |ω) of ω
for the observed data x. In particular, for any specific prior beliefs (described
by a fixed prior), proportional likelihoods should produce the same posterior
distribution.

As Example 12 demonstrates, it may be argued that formal use of reference
priors is not compatible with the likelihood principle. However, the likelihood
principle applies after data have been observed while reference priors are de-
rived before the data are observed. Reference priors are a (limiting) form of
rather specific beliefs, namely those which would maximize the missing in-
formation (about the quantity or interest) associated to a particular design,
and thus depend on the particular design considered. There is no claim that
these particular beliefs describe (or even approximate) those of any particu-
lar individual; instead, they are precisely defined as possible consensus prior
functions, presumably useful as a reference for scientific communication. No-
tice that reference prior functions (often improper) should not be interpreted
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as prior probability distributions: they are merely technical devices to facilitate
the derivation of reference posteriors, and only reference posteriors support a
probability interpretation.

Any statistical analysis should include an evaluation of the sensitivity of the
results to accepted assumptions. In particular, any Bayesian analysis should
include some discussion of the sensitivity of the results to the choice of the
prior, and reference priors are better viewed as a useful tool for this important
aspect of sensitivity analysis. The analyst is supposed to have a unique (often
subjective) prior p(ω), independent of the design of the experiment, but the
scientific community will presumably be interested in comparing the corres-
ponding analyst’s personal posterior with the reference (consensus) posterior
associated to the published experimental design. To report reference posteriors
(possibly for a range of alternative designs) should be seen as part of this sens-
itivity analysis. Indeed, reference analysis provides an answer to an important
conditional question in scientific inference: the reference posterior encapsulates
what could be said about the quantity of interest if prior information about
its value were minimal relative to the information which repeated data from
an specific experimental design M could possibly provide.

3.7 Restricted reference priors

The reference prior π(θ |M,P) is that which maximizes the missing in-
formation about θ relative to model M among the priors which belong to P ,
the class of all sufficiently regular priors which are compatible with available
knowledge (Definition 6). By restricting the class P of candidate priors to those
which satisfy specific restrictions (derived from assumed knowledge) one may
use the reference prior algorithm as an effective tool for prior elicitation: the
corresponding reference prior will incorporate the accepted restrictions, but
no other information.

Under regularity conditions, Theorems 3, 8 and 9, make it relatively simple
to obtain the unrestricted reference prior π(θ) = π(θ |M,P0) which corres-
ponds to the case where the class of candidate priors is the class P0 of all
continuous priors with support Θ. Hence, it is useful to be able to express a
general reference prior π(θ |M,P) in terms of the corresponding unrestricted
reference prior π(θ |M,P0), and the set of restrictions which define the class P
of candidate priors.

If the unrestricted reference prior π(θ |M,P0) is proper, then π(θ |M,P) is
the closest prior in P to π(θ |M,P0), in the sense of minimizing the intrinsic
discrepancy (see Definition 1) between them, so that

π(θ |M,P) = arg inf
p(θ)∈P

δ{ p(θ), π(θ |M,P0) }

If π(θ |M,P0) is not proper it may be necessary to derive π(θ |M,P) from its
definition. However, in the rather large class of problems where the conditions
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which define P may all be expressed in the general form
∫
Θ gi(θ) p(θ) dθ = βi,

for appropriately chosen functions gi(θ), (i.e., as a collection of expected values
which the prior p(θ) must satisfy), an explicit solution is available in terms of
the unrestricted reference prior:

Theorem 10 (Explicit form of restricted reference priors) Consider a
model M ≡ {p(x | θ), x ∈ X , θ ∈ Θ}, let P be the class of continuous proper
priors with support Θ

P =
{

pθ;
∫
Θ

p(θ) dθ = 1,
∫
Θ

gi(θ) p(θ) dθ = βi, i = 1, . . . , m
}

which satisfies the restrictions imposed by the expected values E[gi(θ)] = βi,
and let P0 be the class of all continuous priors with support Θ. The reference
prior π(θ |M,P), if it exists, is then of the form

π(θ |M,P) = π(θ |M,P0) exp
{ ∑m

i=1
λi gi(θ)

}
where the λi’s are constants determined by the conditions which define P.

Theorem 10 may be proven using a standard calculus of variations argument.
If m = 0, so that one only has the constraint that the prior is proper, then
there typically is no restricted reference prior. For details, see Bernardo and
Smith (1994, p. 316). �

Example 13 Location models, continued. Let x = {x1, . . . , xn} be a ran-
dom sample from a location model M ≡ {f(x − µ), x ∈ X , µ ∈ IR},
and suppose that the prior mean and variance of µ are restricted to be
E[µ] = µ0, and Var[µ] = σ2

0. By Theorem 7, the unrestricted reference
prior π(µ |M,P0) is uniform; hence, using Theorem 10, the (restricted)
reference prior must be of the form

π(µ |M,P) ∝ exp{λ1µ + λ2(µ − µ0)
2}

with
∫ ∞
−∞ µ π(µ |M,P) dµ = µ0 and

∫ ∞
−∞(µ − µ0)

2 π(µ |M,P) dµ = σ2
0.

It follows that λ1 = 0 and λ2 = −1/(2σ2
0) and, substituting above, the

restricted reference prior is π(µ |M,P) ∝ exp{−(µ−µ0)
2/(2σ2

0)}, which is
the normal distribution N(µ |µ0, σ0) with the specified mean and variance.
This provides a very powerful argument for the choice of a normal density
to describe prior information in location models, when prior knowledge
about the location parameter is limited to its first two moments.

3.8 One nuisance parameter

Consider now the case where the statistical model M contains one nuisance
parameter, so that M ≡ {p(x | θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λ}, the quantity of
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interest is θ ∈ Θ ⊂ IR, and the nuisance parameter is λ ∈ Λ ⊂ IR. To obtain
the required reference posterior for θ, π(θ |x), an appropriate joint reference
prior πθ(θ, λ) is obviously needed: by Bayes theorem, the corresponding joint
posterior is πθ(θ, λ |x) ∝ p(x | θ, λ) πθ(θ, λ) and, integrating out the nuisance
parameter, the (marginal) reference posterior for the parameter of interest is

π(θ |x) =
∫
Λ

πθ(θ, λ |x) dλ ∝
∫
Λ

p(x | θ, λ) πθ(θ, λ) dλ.

The extension of the reference prior algorithm to the case of two parameters
follows the usual mathematical procedure of reducing the two parameter prob-
lem to a sequential application of the established procedure for the single para-
meter case. Thus, the reference algorithm proceeds by combining the results
obtained in two successive applications of the one-parameter solution:

(1) Conditional on θ, p(x | θ, λ) only depends on the nuisance parameter λ
and, hence, the one-parameter algorithm may be used to obtain the con-
ditional reference prior π(λ | θ) = π(λ | θ,M,P).

(2) If π(λ | θ) has a finite integral in Λ (so that, when normalized, yields a
proper density with

∫
Λ π(λ | θ) dλ = 1), the conditional reference prior

π(λ | θ) may be used to integrate out the nuisance parameter and derive
the one-parameter integrated model,

p(x | θ) =
∫
Λ

p(x | θ, λ) π(λ | θ) dλ, (25)

to which the one-parameter algorithm may be applied again to obtain
the marginal reference prior π(θ) = π(θ |M,P).

(3) The desired θ-reference prior is then πθ(θ, λ) = π(λ | θ) π(θ), and the
required reference posterior is

π(θ |x) ∝
∫
Λ

p(x | θ, λ) πθ(θ, λ) dλ = p(x | θ) π(θ). (26)

Equation (25) suggests that conditional reference priors provides a general
procedure to eliminate nuisance parameters, a major problem within the fre-
quentist paradigm. For a review of this important topic, see Liseo (2005), in
this volume.

If the conditional reference prior π(λ | θ) is not proper, Equation (25) does
not define a valid statistical model and, as a consequence, a more subtle ap-
proach is needed to provide a general solution; this will be described later.
Nevertheless, the simple algorithm described above may be used to obtain
appropriate solutions to a number of interesting problems which serve to il-
lustrate the crucial need to identify the quantity of interest, as is the following
two examples.
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Example 14 Induction. Consider a finite population of (known) size N ,
all of whose elements may or may not have a specified property. A random
sample of size n is taken without replacement, and all the elements in the
sample turn out to have that property. Scientific interest often centres in
the probability that all the N elements in the population have the property
under consideration (natural induction). It has often been argued that for
relatively large n values, this should be close to one whatever might be
the population size N (typically much larger than the sample size n).
Thus, if all the n = 225 randomly chosen turtles in an isolated volcanic
island are found to show a particular difference with respect to those in
the mainland, zoologists would tend to believe that all the turtles in the
island share that property. Formally, if r and R respectively denote the
number of elements in the sample and in the population which have the
property under study, the statistical model is

M ≡
{
p(r |n, R, N), r ∈ {0, . . . , n}, R ∈ {0, . . . , N}

}
,

where R is the unknown parameter, and p(r |n, R, N) =
(

R
r

)(
N−R
n−r

)
/
(

N
n

)
is the relevant hypergeometric distribution. The required result,

p(R = N | r = n, N) =
p(r = n |n, R, N) p(R = N)∑N

R=0 p(r = n |n, R, N) p(R)
. (27)

may immediately be obtained from Bayes theorem, once a prior p(R) for
the unknown number R of elements in the population which have the
property has been established. If the parameter of interest were R itself,
the reference prior would be uniform over its range (Theorem 2), so that
p(R) = (N + 1)−1; using (27) this would lead to the posterior probab-
ility p(R = N | r = n, N) = (n + 1)/(N + 1) which will be small when
(as it is usually the case) the sampling fraction n/N is small. However,
the quantity of interest here is not the value of R but whether or not
R = N , and a reference prior is desired which maximizes the missing in-
formation about this specific question. Rewriting the unknown parameter
as R = (θ, λ), where θ = 1 if R = N and θ = 0 otherwise, and λ = 1
if R = N and λ = R otherwise (so that the quantity of interest θ is ex-
plicitly shown), and using Theorem 2 and the argument above, one gets
π(λ | θ = 1) = 1, π(λ | θ = 0) = N−1, and π(θ = 0) = π(θ = 1) = 1/2, so
that the θ-reference prior is πθ(R) = 1/2 if R = N and πθ(R) = 1/(2N)
if R �= N . Using (27), this leads to

p(R = N | r = n, N) =
[
1 +

1

n + 1

(
1 − n

N

)]−1

≈ n + 1

n + 2
(28)

which, as expected, clearly displays the irrelevance of the sampling frac-
tion, and the approach to unity for large n. In the turtles example (a real
question posed to the author at the Galápagos Islands in the eighties), this
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yields p(R = N | r = n = 225, N) ≈ 0.995 for all large N . The reference
result (28) does not necessarily represents any personal scientist’s beliefs
(although apparently it may approach actual scientists’s beliefs in many
situations), but the conclusions which should be reached from a situation
where the missing information about the quantity of interest (whether
or not R = N) is maximized, a situation mathematically characterized
by the θ-reference prior described above. For further discussion of this
problem (with important applications in philosophy of science, physical
sciences and reliability), see Jeffreys (1961, pp. 128–132), Geisser (1984)
and Bernardo (1985b).

Example 15 Ratio of multinomial parameters. Let data x = {r1, r2, n}
consist of the result of n trinomial observations, with parameters α1, α2

and α3 = 1 − α1 − α2, so that, for 0 < αi < 1, α1 + α2 < 1,

p(r1, r2 |n, α1, α2) = c(r1, r2, n) αr1
1 αr2

2 (1 − α1 − α2)
n−r1−r2 ,

where c(r1, r2, n) = (n!)/(r1! r2! (n−r1−r2)!), and suppose that the quant-
ity of interest is the ratio θ = α1/α2 of the first two original parameters.
Reparametrization in terms of θ and (say) λ = α2 yields

p(r1, r2 |n, θ, λ) = c(r1, r2, n) θr1 λr1+r2 {1 − λ(1 + θ)}n−r1−r2 ,

for θ > 0 and, given θ, 0 < λ < (1+θ)−1. Conditional on θ, this is a model
with one continuous parameter λ, and the corresponding Fisher informa-
tion function is i(λ | θ) = n(1+ θ)/{λ(1−λ(1+ θ))}; using Theorem 9 the
conditional reference prior of the nuisance parameter is π(λ | θ) ∝ i(λ | θ)1/2

which is the proper beta-like prior π(λ | θ) ∝ λ−1/2{1 − λ(1 + θ)}−1/2, with
support on λ ∈ [0, (1 + θ)−1] (which depends on θ). Integration of the
full model p(r1, r2 |n, θ, λ) with the conditional reference prior π(λ | θ)
yields p(r1, r2 |n, θ) =

∫ (1+θ)−1

0 p(r1, r2 |n, θ, λ) π(λ | θ) dλ, the integrated
one-parameter model

p(r1, r2 |n, θ) =
Γ(r1 + r2 + 1

2) Γ(n − r1 − r2 + 1
2)

r1! r2! (n − r1 − r2)!

θr1

(1 + θ)r1+r2

.

The corresponding Fisher information function is i(θ) = n/{2θ(1 + θ)2};
using again Theorem 9 the reference prior of the parameter of interest
is π(θ) ∝ i(θ)1/2 which is the proper prior π(θ) ∝ θ−1/2(1 + θ)−1, θ > 0.
Hence, by Bayes theorem, the reference posterior of the quantity of interest
is π(θ | r1, r2, n) ∝ p(r1, r2 |n, θ) π(θ); this yields

π(θ | r1, r2) =
Γ(r1 + r2 + 1)

Γ(r1 + 1
2) Γ(r2 + 1

2)

θr1−1/2

(1 + θ)r1+r2+1
, θ > 0.

Notice that π(θ | r1, r2) does not depend on n; to draw conclusions about
the value of θ = α1/α2 only the numbers r1 and r2 observed in the first
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two classes matter: a result {55, 45, 100} carries precisely the same inform-
ation about the ratio α1/α2 than a result {55, 45, 10000}. For instance, if
an electoral survey of size n yields r1 voters for party A and r2 voters for
party B, the reference posterior distribution of the ratio θ of the proportion
of A voters to B voters in the population only depends on their respective
number of voters in the sample, r1 and r2, whatever the size and political
intentions of the other n − r1 − r2 citizens in the sample. In particular,
the reference posterior probability that party A gets better results than
party B is Pr[θ > 1 | r1, r2] =

∫ ∞
1 π(θ | r1, r2) dθ. As one would expect, this

is precisely equal to 1/2 if, and only if, r1 = r2; one-dimensional numerical
integration (or use of the incomplete beta function) is required to com-
pute other values. For instance, whatever the total sample size n in each
case, this yields Pr[θ > 1 | r1 = 55, r2 = 45] = 0.841 (with r1 + r2 = 100)
and Pr[θ > 1 | r1 = 550, r2 = 450] = 0.999 (with the same ratio r1/r2, but
r1 + r2 = 1000).

As illustrated by the preceding examples, in a multiparameter model, say
M ≡ {p(x |ω), x ∈ X , ω ∈ Ω} the required (joint) reference prior πθ(ω)
may depend on the quantity of interest, θ = θ(ω) (although, as one would
certainly expect, and will later be demonstrated, this will not be the case if
the new quantity of interest φ = φ(ω) say, is a one-to-one function of θ).
Notice that this does not mean that the analyst’s beliefs should depend on his
or her interests; as stressed before, reference priors are not meant to describe
the analyst’s beliefs, but the mathematical formulation of a particular type of
prior beliefs—those which would maximize the expected missing information
about the quantity of interest—which could be adopted by consensus as a
standard for scientific communication.

If the conditional reference prior π(λ | θ) is not proper, so that Equation (25)
does not define a valid statistical model, then integration may be performed
within each of the elements of an increasing sequence {Λi}∞i=1 of subsets of Λ
converging to Λ over which π(λ | θ) is integrable. Thus, Equation (25) is to be
replaced by

pi(x | θ) =
∫
Λi

p(x | θ, λ) πi(λ | θ) dλ, (29)

where πi(λ | θ) is the renormalized proper restriction of π(λ | θ) to Λi, from
which the reference posterior πi(θ |x) = π(θ |Mi,P), which corresponds to
model Mi ≡ {p(x | θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λi} may be derived.

The use of the sequence {Λi}∞i=1 makes it possible to obtain a corresponding
sequence of θ-reference posteriors {πi(θ |x)}∞i=1 for the quantity of interest θ
which corresponds to the sequence of integrated models (29); the required
reference posterior may then be found as the corresponding intrinsic limit
π(θ |x) = limi→∞ πi(θ |x). A θ-reference prior is then defined as any positive
function πθ(θ, λ) which may formally be used in Bayes’ theorem to directly
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obtain the reference posterior, so that for all x ∈ X , the posterior density
satisfies π(θ |x) ∝ ∫

Λ p(x | θ, λ) πθ(θ, λ) dλ.

The approximating sequences should be consistently chosen within the same
model: given a statistical model M ≡ {p(x |ω), x ∈ X , ω ∈ Ω} an appropri-
ate approximating sequence {Ωi} should be chosen for the whole parameter
space Ω. Thus, if the analysis is done in terms of ψ = {ψ1, ψ2} ∈ Ψ(Ω), the ap-
proximating sequence should be chosen such that Ψi = ψ(Ωi). A very natural
approximating sequence in location-scale problems is {µ, log σ} ∈ [−i, i]2; re-
parametrization to asymptotically independent parameters and approximate
location reparametrizations (Definition 7) may be combined to choose appro-
priate approximating sequences in more complex situations. A formal defini-
tion of reference prior functions in multiparameter problems is possible along
the lines of Definition 6.

As one would hope, the θ-reference prior does not depend on the choice
of the nuisance parameter λ; thus, for any ψ = ψ(θ, λ) such that (θ, ψ) is a
one-to-one function of (θ, λ), the θ-reference prior in terms of (θ, ψ) is simply
πθ(θ, ψ) = πθ(θ, λ)/|∂(θ, ψ)/∂(θ, λ)|, the appropriate probability transforma-
tion of the θ-reference prior in terms of (θ, λ). Notice however that, as men-
tioned before, the reference prior may depend on the parameter of interest;
thus, the θ-reference prior may differ from the φ-reference prior unless either φ
is a one-to-one transformation of θ, or φ is asymptotically independent of θ.
This is an expected consequence of the mathematical fact that the prior which
maximizes the missing information about θ is not generally the same as the
prior which maximizes the missing information about any function φ = φ(θ, λ).

The non-existence of a unique “noninformative” prior for all inference prob-
lems within a given model was established by Dawid, Stone and Zidek (1973)
when they showed that this is incompatible with consistent marginalization.
Indeed, given a two-parameter model M ≡ {p(x | θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λ},
if the reference posterior of the quantity of interest θ, π(θ |x) = π(θ | t), only
depends on the data through a statistic t = t(x) whose sampling distribution,
p(t | θ, λ) = p(t | θ), only depends on θ, one would expect the reference pos-
terior to be of the form π(θ | t) ∝ p(t | θ) π(θ) for some prior π(θ). However,
examples were found where this cannot be the case if a unique joint “nonin-
formative” prior were to be used for all possible quantities of interest within
the same statistical model M.

By definition, a reference prior must be a permissible prior function. In par-
ticular (Definition 3), it must yield proper posteriors for all data sets large
enough to identify the parameters. For instance, if data x consist of a ran-
dom sample of fixed size n from a normal N(x |µ, σ) distribution, so that,
M ≡ {∏n

j=1 N(xj |µ, σ), xj ∈ IR, σ > 0}, the function πµ(µ, σ) = σ−1 is only a
permissible (joint) prior for µ if n ≥ 2 (and, without restrictions in the class P
of candidate priors, a reference prior function does not exist for n = 1).
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Under posterior asymptotic normality, reference priors are easily obtained in
terms of the relevant Fisher information matrix. The following result extends
Theorem 9 to models with two continuous parameters:

Theorem 11 (Reference priors under asymptotic binormality) Let
data x = {y1, . . . ,yn} consist of n conditionally independent (given θ) obser-
vations from a model M ≡ {p(y | θ, λ), y ∈ Y , θ ∈ Θ, λ ∈ Λ}, and let P0

be the class of all continuous (joint) priors with support Θ × Λ}. If the pos-
terior distribution of {θ, λ} is asymptotically normal with dispersion matrix
V (θ̂n, λ̂n)/n, where {θ̂n, λ̂n} is a consistent estimator of {θ, λ}, define

V (θ, λ) =

 vθθ(θ, λ) vθλ(θ, λ)

vθλ(θ, λ) vλλ(θ, λ)

 , H(θ, λ) = V −1(θ, λ), and

π(λ | θ)∝h
1/2
λλ (θ, λ), λ ∈ Λ, (30)

and, if π(λ | θ) is proper,

π(θ) ∝ exp
{ ∫

Λ
π(λ | θ) log[v

−1/2
θθ (θ, λ)] dλ

}
, θ ∈ Θ. (31)

Then, if π(λ | θ) π(θ) is a permissible prior function, the θ-reference prior is

π(θ |Mn,P0) ∝ π(λ | θ) π(θ).

If π(λ | θ) is not proper, integration in (31) is performed on elements of an in-
creasing sequence {Λi}∞i=1 such that

∫
Λi

π(λ | θ) dλ < ∞, to obtain the sequence
{πi(λ | θ) πi(θ)}∞i=1, where πi(λ | θ) is the renormalization of π(λ | θ) to Λi, and
the θ-reference prior πθ(θ, λ) is defined as its corresponding intrinsic limit.

A heuristic justification of Theorem 11 is now provided. Under the stated
conditions, given k independent observations from model M, the conditional
posterior distribution of λ given θ is asymptotically normal with precision
k hλλ(θ, λ̂k), and the marginal posterior distribution of θ is asymptotically nor-

mal with precision k v−1
θθ (θ̂k, λ̂k); thus, using Theorem 9, π(λ | θ) ∝ h

1/2
λλ (θ, λ),

which is Equation (30). Moreover, using Theorem 3,

πk(θ)∝ exp
{ ∫∫

p(θ̂k, λ̂k | θ) log[N{θ | θ̂k, k
−1/2v

1/2
θθ (θ̂k, λ̂k)}] dθ̂k dλ̂k

}
(32)

where, if π(λ | θ) is proper, the integrated model p(θ̂k, λ̂k | θ) is given by

p(θ̂k, λ̂k | θ) =
∫
Λ

p(θ̂k, λ̂k | θ, λ) π(λ | θ) dλ. (33)

Introducing (33) into (32) and using the fact that (θ̂k, λ̂k) is a consistent
estimator of (θ, λ)—so that as k → ∞ integration with p(θ̂k, λ̂k | θ, λ) reduces
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to substitution of (θ̂k, λ̂k) by (θ, λ)—directly leads to Equation (31). If π(λ | θ)
is not proper, it is necessary to integrate in an increasing sequence {Λi}∞i=1 of
subsets of Λ such that the restriction πi(λ | θ) of π(λ | θ) to Λi is proper, obtain
the sequence of reference priors which correspond to these restricted models,
and then take limits to obtain the required result. �

Notice that under appropriate regularity conditions (see e.g., Bernardo and
Smith (1994, Sec. 5.3) and references therein) the joint posterior distribution
of {θ, λ} is asymptotically normal with precision matrix n I(θ̂n, λ̂n), where I(θ)
is Fisher information matrix; in that case, the asymptotic dispersion matrix
in Theorem 11 is simply V (θ, λ) = I−1(θ, λ)/n.

Theorem 12 (Reference priors under factorization) In the conditions
of Theorem 11, if (i) θ and λ are variation independent—so that Λ does not
depend on θ—and (ii) both hλλ(θ, λ) and vθθ(θ, λ) factorize, so that

v
−1/2
θθ (θ, λ) ∝ fθ(θ) gθ(λ), h

1/2
λλ (θ, λ) ∝ fλ(θ) gλ(λ), (34)

then the θ-reference prior is simply πθ(θ, λ) = fθ(θ) gλ(λ), even if the condi-
tional reference prior π(λ | θ) = π(λ) ∝ gλ(λ) is improper.

If h
1/2
λλ (θ, λ) factorizes as h

1/2
λλ (θ, λ) = fλ(θ)gλ(λ), then the conditional refer-

ence prior is π(λ | θ) ∝ fλ(θ)gλ(λ) and, normalizing, π(λ | θ) = c1 gλ(λ), which

does not depend on θ. If, furthermore, v
−1/2
θθ (θ, λ) = fθ(θ)gθ(λ) and Λ does

not depend on θ, Equation (31) reduces to

π(θ) ∝ exp{
∫
Λ

c1 gλ(λ) log[fθ(θ)gθ(λ)] dλ
}

= c2 fθ(θ)

and, hence, the reference prior is πθ(θ, λ) = π(λ | θ) π(θ) = c fθ(θ) gλ(λ). �

Example 16 Inference on the univariate normal parameters. Let data
x = {x1, . . . , xn} consist of a random sample of fixed size n from a normal
distribution N(x |µ, σ). The information matrix I(µ, σ) and its inverse
matrix are respectively

I(µ, σ) =

 σ−2 0

0 2σ−2

 , V (µ, σ) = I−1(µ, σ) =

 σ2 0

0 1
2σ

2

 .

Hence, i1/2
σσ (µ, σ) =

√
2 σ−1 = fσ(µ) gσ(σ), with gσ(σ) = σ−1, so that

π(σ |µ) = σ−1. Similarly, v−1/2
µµ (µ, σ) = σ−1 = fµ(µ) gσ(σ), with fµ(µ) = 1,

and thus π(µ) = 1. Therefore, using Theorem 11 the µ-reference prior is
πµ(µ, σ) = π(σ |µ) π(µ) = σ−1 for all n ≥ 2. For n = 1 the posterior distri-
bution is not proper, the function h(µ, σ) = σ−1 is not a permissible prior,
and a reference prior does not exist. Besides, since I(µ, σ) is diagonal, the
σ-reference prior is πσ(µ, σ) = fσ(σ) gµ(µ) = σ−1, the same as πµ(µ, σ).
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Consider now the case where the quantity of interest is not the mean µ
or the standard deviation σ, but the standardized mean φ = µ/σ (or, equi-
valently, the coefficient of variation σ/µ). Fisher’s matrix in terms of the
parameters φ and σ is I(φ, σ) = J t I(µ, σ) J , where J = (∂(µ, σ)/∂(φ, σ))
is the Jacobian of the inverse transformation, and this yields

I(φ, σ) =

 1 φσ−1

φσ−1 σ−2(2 + φ2)

 , V (φ, σ) =

 1 + 1
2φ

2 −1
2φσ

−1
2φσ 1

2σ
2

 .

Thus, i1/2
σσ (φ, σ) = σ−1(2 + φ2)1/2, and v

−1/2
φφ (φ, σ) = (1 + 1

2φ
2)−1/2. Hence,

using Theorem 11, πφ(φ, σ) = (1 + 1
2φ

2)−1/2σ−1 (n ≥ 2). In the original
parametrization, this is πφ(µ, σ) = (1 + 1

2(µ/σ)2)−1/2σ−2, which is very
different from πµ(µ, σ) = πσ(µ, σ) = σ−1. The reference posterior of the
quantity of interest φ after data x = {x1, . . . , xn} have been observed is

π(φ |x) ∝ (1 + 1
2φ

2)−1/2 p(t |φ) (35)

where t = (
∑

xj)/(
∑

x2
j)

1/2, a one-dimensional statistic whose sampling
distribution, p(t |µ, σ) = p(t |φ), only depends on φ. Thus, the reference
prior algorithm is seen to be consistent under marginalization.

The reference priors πµ(µ, σ) = σ−1 and πσ(µ, σ) = σ−1 for the normal loca-
tion and scale parameters obtained in the first part of Example 16 are just a
particular case of a far more general result:

Theorem 13 (Location-scale models) If M is a location-scale model, so
that for some function f , M ≡ σ−1f{(x − µ)/σ}, x ∈ X , µ ∈ IR, σ > 0},
and P0 is the class of all continuous, strictly positive (joint) priors for (µ, σ),
then a reference prior for either µ or σ, if it exists, is of the form

πµ(µ, σ |M,P0) = πσ(µ, σ |M,P0) ∝ σ−1.

For a proof, which is based on the form of the relevant Fisher matrix, see
Fernández and Steel (1999b). �

When the quantity of interest and the nuisance parameter are not variation
independent, derivation of the reference prior requires special care. This is
illustrated in the example below:

Example 17 Product of positive normal means. Let data consist of two
independent random samples x = {x1, . . . , xn} and y = {y1, . . . , ym} from
N(x |α, 1) and N(y | β, 1), α > 0, β > 0, so that the assumed model is

p(x, y |α, β) =
∏n

i=1
N(xi |α, 1)

∏m

j=1
N(yj | β, 1), α > 0, β > 0,

and suppose that the quantity of interest is the product of the means,
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θ = αβ, a frequent situation in physics and engineering. Reparametriz-
ing in terms of the one-to-one transformation (θ, λ) = (αβ, α/β), Fisher
matrix I(θ, λ) and its inverse matrix V (θ, λ) are,

I =

 m+nλ2

4θλ
1
4

(
n − m

λ2

)
1
4

(
n − m

λ2

)
θ (m+nλ2)

4λ3

 , V =

 θ( 1
nλ

+ λ
m

) 1
n
− λ2

m

1
n
− λ2

m
λ(m+nλ2)

nmθ

 .

and, therefore, using (30),

π(λ | θ) ∝ I22(θ, λ)1/2 ∝ θ1/2(m + nλ2)1/2λ−3/2. (36)

The natural increasing sequence of subsets of the original parameter space,
Ωi = {(α, β); 0 < α < i, 0 < β < i}, transforms, in the parameter space
of λ, into the sequence Λi(θ) = {λ; θ i−2 < λ < i2 θ−1}. Notice that this
depends on θ, so that θ and λ are not variation independent and, hence,
Theorem 12 cannot be applied. Renormalizing (36) in Λi(θ) and using
(31), it is found that, for large i,

πi(λ | θ) = ci(m, n) θ1/2(m + nλ2)1/2λ−3/2

πi(θ) = ci(m, n)
∫
Λi(θ)

(m + nλ2)1/2λ−3/2 log

(
λ

m
+

1

nλ

)−1/2

dλ,

where ci(m, n) = i−1
√

nm/(
√

m +
√

n), which leads to the θ-reference

prior πθ(θ, λ) ∝ θ1/2λ−1
(

λ
m

+ 1
nλ

)1/2
. In the original parametrization, this

corresponds to

πθ(α, β) ∝ (nα2 + mβ2)1/2, n ≥ 1, m ≥ 1 (37)

which depends on the sample sizes through the ratio m/n. It has already
been stressed that the reference prior depends on the experimental design.
It is therefore not surprising that, if the design is unbalanced, the refer-
ence prior depends on the ratio m/n which controls the level of balance.
Notice that the reference prior (37) is very different from the uniform
prior πα(α, β) = πβ(α, β) = 1, which should be used to make reference
inferences about either α or β.

It will later be demonstrated (Example 22) that the prior πθ(α, β) found
above provides approximate agreement between Bayesian credible regions and
frequentist confidence intervals for θ (Berger and Bernardo, 1989); indeed, this
prior was originally suggested by Stein (1986) (who only considered the case
m = n) to obtain such approximate agreement. Efron (1986) used this problem
as an example in which conventional objective Bayesian theory encounters
difficulties since, even within a fixed model M ≡ {p(y |θ), y ∈ Y , θ ∈ Θ},
the “correct” objective prior depends on the particular function φ = φ(θ) one
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desires to estimate. For the reference priors associated to generalizations of
the product of normal means problem, see Sun and Ye (1995, 1999).

3.9 Many parameters

Theorems 11 and 12 may easily be extended to any number of nuisance
parameters. Indeed, let data x = {y1, . . . ,yn} consist of a random sample
of size n from a model M ≡ {p(y |ω), y ∈ Y , ω = {ω1, . . . , ωm}, ω ∈ Ω},
let ω1 be the quantity of interest, assume regularity conditions to guarantee
that, as n → ∞, the joint posterior distribution of ω is asymptotically normal
with mean ω̂n and dispersion matrix V (ω̂n)/n, and let H(ω) = V −1(ω). It
then follows that, if Vj(ω) is the j × j upper matrix of V (ω), j = 1, . . . , m,
Hj(ω) = V −1

j (ω) and hjj(ω) is the lower right (j, j) element of Hj(ω), then

(1) the conditional posterior distribution of ωj given {ω1, . . . , ωj−1}, is asymp-
totically normal with precision n hjj(ω̂n), (j = 2, . . . , m) and

(2) the marginal posterior distribution of ω1 is asymptotically normal with
precision n h11(ω̂n).

This may be used to extend the algorithm described in Theorem 11 to sequen-
tially derive π(ωm |ω1, . . . , ωm−1), π(ωm−1 |ω1, . . . , ωm−2), . . . , π(ω2 |ω1) and
π(ω1); their product yields the reference prior associated to the particular
ordering {ω1, ω2, . . . , ωm}. Intuitively, this is a mathematical description of a
situation where, relative to the particular design considered M, one maxim-
izes the missing information about the parameter ω1 (that of higher inferential
importance), but also the missing information about ω2 given ω1, that of ω3

given ω1 and ω2,... and that of ωm given ω1 to ωm−1. As in sequential decision
theory, this must be done backwards. In particular, to maximize the miss-
ing information about ω1, the prior which maximizes the missing information
about ω2 given ω1 has to be derived first.

The choice of the ordered parametrization, say {θ1(ω), θ2(ω), . . . , θm(ω)},
precisely describes the particular prior required, namely that which sequen-
tially maximizes the missing information about the θj’s in order of inferen-
tial interest. Indeed, “diffuse” prior knowledge about a particular sequence
{θ1(ω), θ2(ω), . . . , θm(ω)} may be very “precise” knowledge about another
sequence {φ1(ω), φ2(ω), . . . , φm(ω)} unless, for all j, φj(ω) is a one-to-one
function of θj(ω). Failure to recognize this fact is known to produce untenable
results; famous examples are the paradox of Stein (1959) (see Example 19
below) and the marginalization paradoxes (see Example 16).

Theorem 14 (Reference priors under asymptotic normality) Let data
x = {y1, . . . ,yn} consist of a random sample of size n from a statistical model
M ≡ {p(y |θ), y ∈ Y , θ = {θ1, . . . , θm}, θ ∈ Θ =

∏m
j=1 Θj}, and let P0 be the

class of all continuous priors with support Θ. If the posterior distribution of θ
is asymptotically normal with dispersion matrix V (θ̂n)/n, where θ̂n is a con-
sistent estimator of θ, H(θ) = V −1(θ), Vj is the upper j × j submatrix of V ,
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Hj = V −1
j , and hjj(θ) is the lower right element of Hj, then the θ-reference

prior, associated to the ordered parametrization {θ1, . . . , θm}, is

π(θ |Mn,P0) = π(θm | θ1, . . . , θm−1) × · · · × π(θ2 | θ1) π(θ1),

with π(θm | θ1, . . . , θm−1) = h1/2
mm(θ) and, for i = 1, . . . , m − 1,

π(θj | θ1, . . . , θj−1)∝ exp
{ ∫

Θj+1

m∏
l=j+1

π(θl | θ1, . . . , θl−1) log[h
1/2
jj (θ)] dθj+1

}

with θj+1 = {θj+1, . . . , θm}, provided π(θj | θ1, . . . , θj−1) is proper for all j.

If the conditional reference priors π(θj | θ1, . . . , θj−1) are not all proper, in-
tegration is performed on elements of an increasing sequence {Θi}∞i=1 such
that

∫
Θij

π(θj | θ1, . . . , θj−1) dθj is finite, to obtain the corresponding sequence
{πi(θ)}∞i=1 of reference priors for the restricted models. The θ-reference prior
is then defined as their intrinsic limit.

If, moreover, (i) Θj does not depend on {θ1, . . . , θj−1}, and (ii) the functions
hjj(θ, λ) factorize in the form

h
1/2
jj (θ) ∝ fj(θj) gj(θ1, . . . , θj−1, θj+1, . . . , θm), j = 1, . . . , m,

then the θ-reference prior is simply πθ(θ) =
∏m

j=1 fj(θj), even if the condi-
tional reference priors are improper.

Under appropriate regularity conditions—see e.g., Bernardo and Smith (1994,
Theo. 5.14)—the posterior distribution of θ is asymptotically normal with
mean the mle θ̂n and precision matrix n I(θ̂n), where I(θ) is Fisher matrix,

iij(θ) = −
∫

Y
p(y |θ)

∂2

∂θi∂θj

log[p(y |θ)] dy;

in that case, H(θ) = n I(θ), and the reference prior may be computed from the
elements of Fisher matrix I(θ). Notice, however, that in the multivariate case,
the reference prior does not yield Jeffreys multivariate rule (Jeffreys, 1961),
πJ(θ) ∝ |I(θ)|1/2. For instance, in location-scale models, the (µ, σ)-reference
prior and the (σ, µ)-reference prior are both πR(µ, σ) = σ−1 (Theorem 13),
while Jeffreys multivariate rule yields πJ(µ, σ) = σ−2. As a matter of fact,
Jeffreys himself criticised his own multivariate rule. This is known, for instance,
to produce both marginalization paradoxes Dawid, Stone and Zidek (1973),
and strong inconsistencies (Eaton and Freedman, 2004). See, also, Stein (1962)
and Example 23.

Theorem 14 provides a procedure to obtain the reference prior πθ(θ) which
corresponds to any ordered parametrization θ = {θ1, . . . , θm}. Notice that,
within any particular multiparameter model

M ≡ {p(x |θ), x ∈ X , θ = {θ1, . . . , θm} ∈ Θ ⊂ IRk},
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the reference algorithm provides a (possibly different) joint reference prior

πφ(φ) = π(φm |φ1, . . . , φm−1) × · · · × π(φ2 |φ1) π(φ1),

for each possible ordered parametrization {φ1(θ), φ2(θ), . . . , φm(θ)}. However,
as one would hope, the results are coherent under monotone transformations
of each of the φi(θ)’s in the sense that, in that case, πφ(φ) = πθ[ θ(φ) ]|J(φ)|,
where J(φ) is the Jacobian of the inverse transformation θ = θ(φ), of general
element jij(φ) = ∂θi(φ)/∂φj. This property of coherence under appropriate
reparametrizations may be very useful in choosing a particular parametriza-
tion (for instance one with orthogonal parameters, or one in which the rel-
evant hjj(θ) functions factorize) which simplifies the implementation of the
algorithm.

Starting with Jeffreys (1946) pioneering work, the analysis of the invari-
ance properties under reparametrization of multiparameter objective priors
has a very rich history. Relevant pointers include Hartigan (1964), Stone (1965,
1970), Zidek (1969), Florens (1978, 1982), Dawid (1983), Consonni and Ver-
onese (1989b), Chang and Eaves (1990), George and McCulloch (1993), Datta
and J. K. Ghosh (1995b), Yang (1995), Datta and M. Ghosh (1996), Eaton
and Sudderth (1999, 2002, 2004) and Severini, Mukerjee and Ghosh (2002).
In particular, Datta and J. K. Ghosh (1995b), Yang (1995) and Datta and
M. Ghosh (1996) are specifically concerned with the invariance properties of
reference distributions.

Example 18 Multivariate normal data. Let data consist of a size n ran-
dom sample x = {y1, . . . ,yn}, n ≥ 2, from an m-variate normal distribu-
tion with mean µ, and covariance matrix σ2 Im, m ≥ 1, so that

I(µ, σ) =

 σ−2 Im 0

0 (2/m) σ−2


It follows from Theorem 14 that the reference prior relative to the natural
parametrization θ = {µ1, . . . , µm, σ} is πθ(µ1, . . . , µm, σ) ∝ σ−1, and
also that the result does not depend on the order in which the para-
metrization is taken, since their asymptotic covariances are zero. Hence,
πθ(µ1, . . . , µm, σ) ∝ σ−1 is the appropriate prior function to obtain the
reference posterior of any piecewise invertible function φ(µj) of µj, and
also to obtain the reference posterior of any piecewise invertible function
φ(σ) of σ. In particular, the corresponding reference posterior for any of
the µj’s is easily shown to be the Student density

π(µj |y1, . . . ,yn) = St
{
µj

∣∣∣∣ yj, s/
√

(n − 1), m(n − 1)
}

with nyj =
∑n

i=1 yij, and nms2 =
∑m

j=1

∑n
i=1(yij − yj)

2, which agrees with
the standard argument according to which one degree of freedom should
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be lost by each of the unknown means. Similarly, the reference posterior
of σ2 is the inverted Gamma

π(σ2 |y1, . . . ,yn) = IGa{σ2 |n(m − 1)/2, nms2/2}

When m = 1, these results reduce to those obtained in Example 16.

Example 19 Stein’s paradox. Let x ∈ X be a random sample of size n
from a m-variate normal Nm(x |µ, Im) with mean µ = {µ1, . . . , µm} and
unitary dispersion matrix. The reference prior which corresponds to any
permutation of the µi’s is uniform, and this uniform prior leads indeed
to appropriate reference posterior distributions for any of the µj’s, given
by π(µj |x) = N(µj |xj, 1/

√
n). Suppose, however, that the quantity of

interest is θ =
∑

j µ2
j , the distance of µ from the origin. As shown by

Stein (1959), the posterior distribution of θ based on the uniform prior (or
indeed any “flat” proper approximation) has very undesirable properties;
this is due to the fact that a uniform (or nearly uniform) prior, although
“noninformative” with respect to each of the individual µj’s, is actually
highly informative on the sum of their squares, introducing a severe bias
towards large values of θ (Stein’s paradox). However, the reference prior
which corresponds to a parametrization of the form {θ, λ} produces, for
any choice of the nuisance parameter vector λ = λ(µ), the reference pos-
terior for the quantity of interest π(θ |x) = π(θ | t) ∝ θ−1/2χ2(n t |m, n θ),
where t =

∑
i x

2
i , and this posterior is shown to have the appropriate

consistency properties. For further details see Ferrándiz (1985).
If the µi’s were known to be related, so that they could be assumed

to be exchangeable, with p(µ) =
∏m

i=1 p(µi |φ), for some p(µ |φ), one
would have a (very) different (hierarchical) model. Integration of the µi’s
with p(µ) would then produce a model M ≡ {p(x |φ), x ∈ X , φ ∈ Φ}
parametrized by φ, and only the corresponding reference prior π(φ |M)
would be required. See below (Subsection 3.12) for further discussion on
reference priors in hierarchical models.

Far from being specific to Stein’s example, the inappropriate behaviour in
problems with many parameters of specific marginal posterior distributions
derived from multivariate “flat” priors (proper or improper) is very frequent.
Thus, as indicated in the introduction, uncritical use of “flat” priors (rather
than the relevant reference priors), should be very strongly discouraged.

3.10 Discrete parameters taking an infinity of values

Due to the non-existence of an asymptotic theory comparable to that of the
continuous case, the infinite discrete case presents special problems. However,
it is often possible to obtain an approximate reference posterior by embedding
the discrete parameter space within a continuous one.

43



Example 20 Discrete parameters taking an infinite of values. In the con-
text of capture-recapture models, it is of interest to make inferences about
the population size θ ∈ {1, 2, . . .} on the basis of data x = {x1, . . . , xn},
which are assumed to consist of a random sample from

p(x | θ) =
θ(θ + 1)

(x + θ)2
, 0 ≤ x ≤ 1.

This arises, for instance, in software reliability, when the unknown num-
ber θ of bugs is assumed to be a continuous mixture of Poisson distri-
butions. Goudie and Goldie (1981) concluded that, in this problem, all
standard non-Bayesian methods are liable to fail; Raftery (1988) finds
that, for several plausible “diffuse looking” prior distributions for the dis-
crete parameter θ, the corresponding posterior virtually ignores the data;
technically, this is due to the fact that, for most samples, the corresponding
likelihood function p(x | θ) tends to one (rather than to zero) as θ → ∞.
Embedding the discrete parameter space Θ = {1, 2, . . .} into the continu-
ous space Θ = (0,∞) (since, for each θ > 0, p(x|θ) is still a probability
density for x), and using Theorem 9, the appropriate reference prior is

π(θ) ∝ i(θ)1/2 ∝ (θ + 1)−1θ−1,

and it is easily verified that this prior leads to a posterior in which the data
are no longer overwhelmed. If the problem requires the use of discrete θ
values, the discrete approximation Pr(θ = 1 |x) =

∫ 3/2
0 π(θ |x) dθ, and

Pr(θ = j |x) =
∫ j+1/2
j−1/2 π(θ |x) dθ, j > 1, may be used as an approximate

discrete reference posterior, specially when interest mostly lies on large θ
values, as it is typically the case.

3.11 Behaviour under repeated sampling

The frequentist coverage probabilities of the different types of credible inter-
vals which may be derived from reference posterior distributions are sometimes
identical, and usually very close, to their posterior probabilities; this means
that, even for moderate samples, an interval with reference posterior prob-
ability q may often be interpreted as an approximate frequentist confidence
interval with significance level 1 − q.

Example 21 Coverage in simple normal problems. Consider again infer-
ences about the mean µ and the variance σ2 of a normal N(x |µ, σ) model.
Using the reference prior πµ(µ, σ) ∝ σ1 derived in Example 16, the refer-
ence posterior distribution of µ after a random sample x = {x1, . . . , xn}
has been observed, π(µ |x) ∝ ∫ ∞

0

∏n
j=1 N(xj |µ, σ) πµ(µ, σ) dσ, is the Stu-

dent density π(µ |x) = St(µ |x, s/
√

n − 1, n − 1) ∝ [s2 + (x − µ)2]−n/2,
where x =

∑
j xj/n, and s2 =

∑
j(xj − x)2/n. Hence, the reference pos-
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terior of the standardized function of µ, φ(µ) =
√

n − 1 (µ−x)/s is stand-
ard Student with n − 1 degrees of freedom. But, conditional on µ, the
sampling distribution of t(x) =

√
n − 1 (µ−x)/s is also standard Student

with n−1 degrees of freedom. It follows that, for all sample sizes, posterior
reference credible intervals for µ will numerically be identical to frequent-
ist confidence intervals based on the sampling distribution of t. Similar
results are obtained concerning inferences about σ: the reference posterior
distribution of ψ(σ) = ns2/σ2 is a χ2 with n − 1 degrees of freedom but,
conditional on σ, this is also the sampling distribution of r(x) = ns2/σ2.

The exact numerical agreement between reference posterior credible inter-
vals and frequentist confidence intervals shown in Example 21 is however the
exception, not the norm. Nevertheless, for large sample sizes, reference credible
intervals are always approximate confidence intervals.

More precisely, let data x = {x1, . . . , xn} consist of n independent obser-
vations from M = {p(x | θ), x ∈ X , θ ∈ Θ}, and let θq(x, pθ) denote the q
quantile of the posterior p(θ |x) ∝ p(x | θ) p(θ) which corresponds to the prior
p(θ), so that

Pr
[
θ ≤ θq(x, pθ) |x

]
=

∫
θ≤θq(x, pθ)

p(θ |x) dθ = q.

Standard asymptotic theory may be used to establish that, for any sufficiently
regular pair {pθ, M} of prior pθ and model M, the coverage probability of
the region thus defined, Rq(x, θ, pθ) = {x; θ ≤ θq(x, pθ)}, converges to q as
n → ∞. Specifically, for all sufficiently regular priors,

Pr
[
θq(x, pθ) ≥ θ | θ

]
=

∫
Rq(x, θ, pθ)

p(x | θ) dx = q + O(n−1/2).

It has been found however that, when there are no nuisance parameters, the
reference prior πθ typically satisfies

Pr
[
θq(x, πθ) ≥ θ | θ

]
= q + O(n−1);

this means that the reference prior is often a probability matching prior, that
is, a prior for which the coverage probabilities of one-sided posterior credible
intervals are asymptotically closer to their posterior probabilities. Hartigan
(1966) showed that the coverage probabilities of two-sided Bayesian posterior
credible intervals satisfy this type of approximation to O(n−1) for all suffi-
ciently regular prior functions.

In a pioneering paper, Welch and Peers (1963) established that in the case
of the one-parameter regular continuous models Jeffreys prior (which in this
case, Theorem 9, is also the reference prior), is the only probability match-
ing prior. Hartigan (1983, p. 79) showed that this result may be extended
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to one-parameter discrete models by using continuity corrections. Datta and
J. K. Ghosh (1995a) derived a differential equation which provides a necessary
and sufficient condition for a prior to be probability matching in the multi-
parameter continuous regular case; this has been used to verify that reference
priors are typically probability matching priors.

In the nuisance parameter setting, reference priors are sometimes matching
priors fro the parameter of interest, but in this general situation, matching
priors may not always exist or be unique (Welch, 1965; Ghosh and Mukerjee,
1998). For a review of probability matching priors, see Datta and Sweeting
(2005), in this volume.

Although the results described above only justify an asymptotic approxim-
ate frequentist interpretation of reference posterior probabilities, the coverage
probabilities of reference posterior credible intervals derived from relatively
small samples are also found to be typically close to their posterior probab-
ilities. This is now illustrated within the product of positive normal means
problem, already discussed in Example 17.

Example 22 Product of normal means, continued. Let available data
x = {x, y} consist of one observation x from N(x |α, 1), α > 0, and an-
other observation y from N(y | β, 1), β > 0, and suppose that the quantity
of interest is the product of the means θ = α β. The behaviour under
repeated sampling of the posteriors which correspond to both the con-
ventional uniform prior πu(α, β) = 1, and the reference prior πθ(α, β) =
(α2 + β2)1/2 (see Example 17) is analyzed by computing the coverage
probabilities Pr[Rq | θ, pθ] =

∫
Rq(x,θ,pθ) p(x | θ) dx associated to the regions

Rq(x, θ, pθ) = {x; θ ≤ θq(x, pθ)} defined by their corresponding quantiles,
θq(x, πu) and θq(x, πθ). Table 1 contains the coverage probabilities of the
regions defined by the 0.05 posterior quantiles. These have been numeric-
ally computed by simulating 4, 000 pairs {x, y} from N(x |α, 1)N(y | β, 1)
for each of the {α, β} pairs listed in the first column of the table.

Table 1 Coverage probabilities of 0.05-credible regions for θ = α β.

{α, β} Pr[R0.05 | θ, πu] Pr[R0.05 | θ, πθ]

{1, 1} 0.024 0.047
{2, 2} 0.023 0.035
{3, 3} 0.028 0.037
{4, 4} 0.033 0.048
{5, 5} 0.037 0.046

The standard error of the entries in the table is about 0.0035. It may be
observed that the estimated coverages which correspond to the reference
prior are appreciably closer to the nominal value 0.05 that those corres-
ponding to the uniform prior. Notice that, although it may be shown that
the reference prior is probability matching in the technical sense described
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above, the empirical results shown in the Table do not follow from that
fact, for probability matching is an asymptotic result, and one is dealing
here with samples of size n = 1. For further details on this example, see
Berger and Bernardo (1989).

3.12 Prediction and hierarchical models

Two classes of problems that are not specifically covered by the methods
described above are hierarchical models and prediction problems. The diffi-
culty with these problems is that the distributions of the quantities of interest
must belong to specific families of distributions. For instance, if one wants
to predict the value of y based on x when (y, x) has density p(y, x |θ), the
unknown of interest is y, but its distribution is conditionally specified; thus,
one needs a prior for θ, not a prior for y. Likewise, in a hierarchical model
with, say, {µ1, µ2, . . . , µp} being N(µi | θ, λ), the µi’s may be the parameters
of interest, but a prior is only needed for the hyperparameters θ and λ.

In hierarchical models, the parameters with conditionally known distribu-
tions may be integrated out (which leads to the so-called marginal over-
dispersion models). A reference prior for the remaining parameters based on
this marginal model is then required. The difficulty that arises is how to then
identify parameters of interest and nuisance parameters to construct the or-
dering necessary for applying the reference algorithm, the real parameters of
interest having been integrated out.

A possible solution to the problems described above is to define the quantity
of interest to be the conditional mean of the original parameter of interest.
Thus, in the prediction problem, the quantity of interest could be defined to
be φ(θ) = E[y|θ], which will be either θ or some transformation thereof, and
in the hierarchical model mentioned above the quantity of interest could be
defined to be E[µi | θ, λ] = θ. More sophisticated choices, in terms of appro-
priately chosen discrepancy functions, are currently under scrutiny.

Bayesian prediction with objective priors is a very active research area.
Pointers to recent suggestions include Kuboki (1998), Eaton and Sudderth
(1998, 1999) and Smith (1999). Under appropriate regularity conditions, some
of these proposals lead to Jeffreys multivariate prior, π(θ) ∝ |I(θ)|1/2. How-
ever, the use of that prior may lead to rather unappealing predictive posteriors
as the following example demonstrates.

Example 23 Normal prediction. Let available data consist of a random
sample x = {x1, . . . , xn} from N(xj |µ, σ), and suppose that one is inter-
ested in predicting a new, future observation x from N(x |µ, σ). Using the
argument described above, the quantity of interest could be defined to
be φ(µ, σ) = E[x |µ, σ] = µ and hence (see Example 16) the appropriate
reference prior would be πx(µ, σ) = σ−1 (n ≥ 2). The corresponding joint
reference posterior is π(µ, σ |x) ∝ ∏n

j=1 N(xj |µ, σ) σ−1 and the posterior
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predictive distribution is

π(x |x) =
∫ ∞

0

∫ ∞

−∞
N(x |µ, σ) π(µ, σ |x) dµ dσ

∝{(n + 1)s2 + (x − µ)2)}−n/2,

∝ St(x |x, s{(n + 1)/(n − 1)}1/2, n − 1), n ≥ 2 (38)

where, as before, x = n−1 ∑n
j=1 xj and s2 = n−1 ∑n

j=1(xj − x)2. As one
would expect, the reference predictive distribution (38) is proper whenever
n ≥ 2: in the absence of prior knowledge, n = 2 is the minimum sample
size required to identify the two unknown parameters.

It may be verified that the predictive posterior (38) has consistent cover-
age properties. For instance, with n = 2, the reference posterior predictive
probability that a third observation lies within the first two is

Pr[x(1) < x < x(2) |x1, x2] =
∫ x(2)

x(1)

π(x |x1, x2) dx = 1
3

,

where x(1) = min[x1, x2], and x(2) = max[x1, x2]. This is consistent with
the fact that, for all µ and σ, the frequentist coverage of the corresponding
region of IR3 is precisely∫ ∫ ∫

{(x1,x2,x3); x(1)<x3<x(2)}

∏3

i=1
N(xj |µ, σ) dx1 dx2 dx3 = 1

3
. (39)

In sharp contrast, if Jeffreys multivariate rule πJ(µ, σ) ∝ |I(µ, σ)|1/2 = σ−2

were used, the posterior predictive would have been a Student t centred
at x, with scale s{(n + 1)/n}1/2, and with n degrees of freedom, which is
proper whenever n ≥ 1. Thus, with πJ(µ, σ) as a prior, probabilistic pre-
dictions would be possible with only one observation, rather unappealing
when no prior knowledge is assumed. Moreover, the probability that a
third observation lies within the first two which corresponds to the prior
πJ(µ, σ) is 1/2, rather than 1/3, a less than attractive result in view of (39).

For a recent predictive probability matching approach to objective predictive
posteriors, see Datta, Mukerjee, Ghosh and Sweeting (2000).

4 Reference Inference Summaries

From a Bayesian viewpoint, the final outcome of a problem of inference
about any unknown quantity is nothing but the posterior distribution of that
quantity. Thus, given some data x and conditions C, all that can be said
about any function θ(ω) of the parameters ω which govern the model is
contained in the posterior distribution p(θ |x, C), and all that can be said
about some function y of future observations from the same model is contained
in its posterior predictive distribution p(y |x, C). In fact (Bernardo, 1979a),
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Bayesian inference may be described as a decision problem where the space
of available actions is the class of those posterior probability distributions of
the quantity of interest which are compatible with accepted assumptions.

However, to make it easier for the user to assimilate the appropriate con-
clusions, it is often convenient to summarize the information contained in
the posterior distribution, while retaining as much of the information as pos-
sible. This is conventionally done by (i) providing values of the quantity of
interest which, in the light of the data, are likely to be “close” to its true
value, and (ii) measuring the compatibility of the results with hypothetical
values of the quantity of interest which might have been suggested in the con-
text of the investigation. In this section, objective Bayesian counterparts to
these traditional inference problems of estimation and testing, which are based
on the joint use of intrinsic loss functions and reference analysis, are briefly
considered.

4.1 Point Estimation

Let x be the available data, which are assumed to consist of one observation
from M ≡ {p(x |ω), x ∈ X , ω ∈ Ω}, and let θ = θ(ω) ∈ Θ be the quantity
of interest. Without loss of generality, the original model M may be written
as M ≡ {p(x |θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λ}, in terms of the quantity of
interest θ and a vector λ of nuisance parameters. A point estimate of θ is
some value θ̃ ∈ Θ which could possibly be regarded as an appropriate proxy
for the actual, unknown value of θ.

Formally, to choose a point estimate for θ is a decision problem, where the
action space is the class Θ of possible θ values. From a decision-theoretic
perspective, to choose a point estimate θ̃ of some quantity θ is a decision to
act as if θ̃ were θ, not to assert something about the value of θ (although desire
to assert something simple may well be the main reason to obtain an estimate).
To solve this decision problem it is necessary to specify a loss function �(θ̃, θ)
measuring the consequences of acting as if the true value of the quantity of
interest were θ̃, when it is actually θ. The expected posterior loss if θ̃ were
used is l[θ̃ |x] =

∫
Θ �(θ̃, θ) π(θ |x) dθ, and the Bayes estimate is that θ̃ value

which minimizes l[θ̃ |x] in Θ. The Bayes estimator is the function of the data
θ∗(x) = arg minθ̃∈Θ l[θ̃ |x].

For any given model and data, the Bayes estimate depends on the chosen loss
function. The loss function is context specific, and should generally be chosen
in terms of the anticipated uses of the estimate; however, a number of conven-
tional loss functions have been suggested for those situations where no partic-
ular uses are envisaged. These loss functions produce estimates which may be
regarded as simple descriptions of the location of the posterior distribution.
For example, if the loss function is quadratic, so that �(θ̃, θ) = (θ̃−θ)t(θ̃−θ),
then the Bayes estimate is the posterior mean θ∗ = E[θ |x], assuming that
the mean exists. Similarly, if the loss function is a zero-one function, so that
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�(θ̃, θ) = 0 if θ̃ belongs to a ball of radius ε centred in θ and �(θ̃, θ) = 1 oth-
erwise, then the Bayes estimate θ∗ tends to the posterior mode as the radius
of the ball tends to zero, assuming that a unique mode exists.

If θ is univariate and the loss function is linear, so that �(θ̃, θ) = c1(θ̃ − θ)
if θ̃ ≥ θ, and �(θ̃, θ) = c2(θ − θ̃) otherwise, then the Bayes estimate is the
posterior quantile of order c2/(c1 + c2), so that Pr[θ < θ∗] = c2/(c1 + c2). In
particular, if c1 = c2, the Bayes estimate is the posterior median. The results
just described for univariate linear loss functions clearly illustrate the fact
that any possible parameter value may turn out be the Bayes estimate: it all
depends on the loss function describing the consequences of the anticipated
uses of the estimate.

Conventional loss functions are typically not invariant under reparametriza-
tion. As a consequence, the Bayes estimator φ∗ of a one-to-one transformation
φ = φ(θ) of the original parameter θ is not necessarily φ(θ∗) (the univariate
posterior median, which is coherent under reparametrization, is an interest-
ing exception). Moreover, conventional loss functions, such as the quadratic
loss, focus attention on the discrepancy between the estimate θ̃ and the true
value θ, rather than on the more relevant discrepancy between the statist-
ical models they label. The intrinsic discrepancy δ{Mθ̃, px |θ,λ} (Definition 1)
directly measures how different the probability model p(x |θ, λ) is from its
closest approximation within the family Mθ̃ ≡ {p(x | θ̃, λ), λ ∈ Λ}, and its
value does not depend on the particular parametrization chosen to describe
the problem.

Definition 8 (Intrinsic estimation) Let available data x consist of one
observation from M ≡ {p(x |θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λ}, let Mθ̃ be the
restricted model Mθ̃ ≡ {p(x | θ̃, λ), x ∈ X , λ ∈ Λ}, and let

δ{θ̃, (θ, λ)} = δ{Mθ̃, px |θ,λ} = min
λ̃∈Λ

δ{p(x | θ̃, λ̃), p(x |θ, λ)} (40)

be the intrinsic discrepancy between the distribution p(x |θ, λ) and the set of
distributions Mθ̃. The reference posterior expected intrinsic loss is

d(θ̃ |x) = E[δ |x] =
∫
Θ

∫
Λ

δ{θ̃, (θ, λ)} πδ(θ, λ |x) dθ dλ, (41)

where πδ(θ, λ |x) ∝ p(x |θ, λ) πδ(θ, λ) is the reference posterior of (θ, λ)
when δ is the quantity of interest. Given x, the intrinsic estimate θ∗ = θ∗(x)
is that value θ̃ ∈ Θ which minimizes the posterior reference expected intrinsic
loss d(θ̃ |x). As a function of x, θ∗(x) is the intrinsic estimator of θ.

The intrinsic estimate is well defined for any dimensionality, and it is coherent
under transformations, in the sense that, if φ(θ) is a one-to-one function of θ,
then the intrinsic estimate φ∗ of φ(θ) is simply φ(θ∗). Under broad regularity
conditions (Juárez, 2004), the intrinsic estimator is admissible under the in-
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trinsic loss. Moreover, the reference expected intrinsic loss d(θ̃ |x) is typically
a convex function of θ̃ in a neighbourhood of its minimum, in which case the
intrinsic estimate θ∗ is unique, and it is easily derived by either analytical or
numerical methods.

Example 24 Intrinsic estimation of a binomial parameter. Consider es-
timation of a binomial proportion θ from r successes given n trials; the
reference prior (see Example 12) is π(θ) ∝ θ−1/2(1 − θ)−1/2, the corres-
ponding reference posterior is π(θ |n, r) = Be(θ | r + 1

2 , n− r + 1
2), and the

quadratic loss based estimator (the posterior mean) of θ is E[θ |n, r] =
(r + 1/2)/(n + 1). However, the quadratic loss based estimator of the log-
odds φ(θ) = log[θ/(1 − θ)], is E[φ |n, r] = ψ(r + 1/2) − ψ(n − r + 1/2)
(where ψ(x) = d log[Γ(x)]/dx is the digamma function), which is not equal
to φ(E[θ |n, r]).

On the other hand the intrinsic discrepancy between two binomial dis-
tributions with parameters θ and θ̃ and the same value of n, the loss to be
suffered if θ̃ were used as a proxy for θ, is δ{θ̃, θ |n} = n δ1{θ̃, θ}, where
(see Example 1)

δ1{θi, θj}= min{k(θi | θi), k(θj | θi)},
k(θi | θj) = θj log[ θj/θi ] + (1 − θj) log[(1 − θj)/(1 − θi)].

The intrinsic estimator θ∗ = θ∗(r, n) is obtained by minimizing the refer-
ence expected posterior loss

d(θ̃ |n, r) =
∫ 1

0
δ(θ̃, θ |n) Be(θ | r + 1

2 , n − r + 1
2) dθ. (42)

Since intrinsic estimation is coherent under reparametrization, the intrinsic
estimator of, say, the log-odds is simply the log-odds of the intrinsic es-
timator of θ. The exact value of θ∗ may be easily obtained by numer-
ical methods, but a very good linear approximation, based on the refer-
ence posterior mean of the approximate location parameter (Definition 7)
φ(θ) =

∫ θ
0 θ−1/2(1 − θ)−1/2 dθ = 2

π arcsin
√

θ, is

θ∗(r, n) ≈ sin2{π
2E[φ | r, n]} ≈ (r + 1

3)/(n + 2
3). (43)

The linear approximation (43) remains good even for small samples and ex-
treme r values. For instance, the exact value of the intrinsic estimator with
r = 0 and n = 12 (see Example 28 later in this section) is θ∗ = 0.02631,
while the approximation yields 0.02632.

Example 25 Intrinsic estimation of normal variance. The intrinsic dis-
crepancy δ{p1, p2} between two normal densities p1(x) and p2(x), with
pi(x) = N(x |µi, σi), is δ{p1, p2} = min{k{p1 | p2}, k{p2 | p1}}, where the
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relevant Kullback-Leibler directed divergences are

k{pi | pj} =
∫
X

pj(x) log
pj(x)

pi(x)
dx =

1

2

{
log

σ2
i

σ2
j

+
σ2

j

σ2
i

− 1 +
(µi − µj)

2

σ2
i

}
.

The intrinsic discrepancy between the normal N(x |µ, σ) and the set of nor-
mals with standard deviation σ̃, Mσ̃ ≡ {N(x | µ̃, σ̃), µ̃ ∈ IR)} is achieved
when µ̃ = µ, and is found to be

δ{Mσ̃, N(x |µ, σ)} = δ(θ) =


1
2 [log θ−1 + θ − 1], θ < 1

1
2 [log θ + θ−1 − 1], θ ≥ 1

which only depends on the ratio θ = σ̃2/σ2. Since, for any fixed σ̃, the
intrinsic discrepancy, δ{σ̃, (µ, σ)} = δ(θ) is a one-to-one function of σ,
the reference prior when δ is the quantity of interest is πδ(µ, σ) = σ−1,
the same as if the quantity of interest were σ (see Example 16). The
corresponding posterior distribution of θ = σ̃2/σ2, after a random sample
x = {x1, . . . , xn} of fixed size n ≥ 2 has been observed, is the gamma
density π(θ |x) = Ga(θ | (n − 1)/2, ns2/σ̃2), where s2 =

∑
j(xj − x)2/n.

The intrinsic estimate of σ is that value σ∗ of σ̃ which minimizes the
expected posterior loss,∫ ∞

0
δ(θ) π(θ |x) dθ =

∫ ∞

0
δ(θ) Ga(θ | (n − 1)/2, ns2/σ̃2) dθ.

The exact value of σ∗(x) is easily obtained by one-dimensional numerical
integration. However, for n > 2, a very good approximation is given by

σ∗ =

√∑
j(xj − x)2

n − 2
(44)

which is larger than both the mle estimate s (which divides by n the sum
of squares) and the squared root of the conventional unbiased estimate of
the variance (which divides by n − 1). A good approximation for n = 2
is σ∗ = (

√
5/2)|x1 − x2|. Since intrinsic estimation is coherent under one-

to-one reparametrizations, the intrinsic estimator of the variance is (σ∗)2,
and the intrinsic estimator of, say, log σ is simply log σ∗.

Intrinsic estimation is a very powerful, general procedure for objective, invari-
ant point estimation. For further discussion, see Bernardo and Juárez (2003).

4.2 Region (interval) estimation

To describe the inferential content of the posterior distribution π(θ |x) of
the quantity of interest it is often convenient to quote regions R ⊂ Θ of
given (posterior) probability under π(θ |x). Any subset of the parameter space

52



Rq ⊂ Θ such that
∫
Rq

π(θ |x) dθ = q, 0 < q < 1, so that, given data x, the
true value of θ belongs to Rq with probability q, is said to be a (posterior)
q-credible region of θ. Credible regions are coherent under reparametrization;
thus, for any q-credible region Rq of θ a one-to-one transformation φ = φ(θ),
φ(Rq) is a q-credible region of φ. However, for any given q there are generally
infinitely many credible regions.

Sometimes, credible regions are selected to have minimum size (length,
area, volume), resulting in highest probability density (HPD) regions, where
all points in the region have larger probability density than all points out-
side. However, HPD regions are not coherent under reparametrization: the
image φ(Rq) of an HPD q-credible region Rq will be a q-credible region for φ,
but will not generally be HPD; indeed, there is no compelling reason to re-
strict attention to HPD credible regions. In one dimension, posterior quantiles
are often used to derive credible regions. Thus, if θq = θq(x) is the 100q%
posterior quantile of θ, then Rl

q = {θ; θ ≤ θq} is a one-sided, typically
unique q-credible region, and it is coherent under reparametrization. Prob-
ability centred q-credible regions of the form Rc

q = {θ; θ(1−q)/2 ≤ θ ≤ θ(1+q)/2}
are easier to compute, and are often quoted in preference to HPD regions.
However, centred credible regions are only really appealing when the pos-
terior density has a unique interior mode, and have a crucial limitation: they
are not uniquely defined in problems with more than one dimension.

For reasonable loss functions, a typically unique credible region may be
selected as a lowest posterior loss (LPL) region, where all points in the region
have smaller (posterior) expected loss than all points outside.

Definition 9 (Intrinsic credible region) Let available data x consist of
one observation from M ≡ {p(x |θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λ}, let Mθ̃ be
the restricted model Mθ̃ ≡ {p(x | θ̃, λ), x ∈ X , λ ∈ Λ} and let δ{θ̃, (θ, λ)} be
the intrinsic discrepancy between the distribution p(x |θ, λ) and the set Mθ̃,.
An intrinsic q-credible region R∗

q = R∗
q(x) ⊂ Θ is a subset of the parameter

space Θ such that,

∫
R∗

q(x)
π(θ |x) dθ = q, ∀θi ∈ R∗

q(x), ∀θj /∈ R∗
q(x), d(θ̃i |x) ≤ d(θ̃j |x),

where, as before, d(θ̃ |x) = E[δ |x] =
∫
Θ

∫
Λ δ{θ̃, (θ, λ)} πδ(θ, λ |x) dθ dλ is

the reference posterior expected intrinsic loss.

Intrinsic credible regions are well defined for any dimensionality, and they
are coherent under one-to-one transformations, in the sense that, if φ{θ} is a
one-to-one transformation of θ and R∗

q ⊂ Θ is an intrinsic q-credible region
for θ, then φ{R∗

q} ⊂ Φ is an intrinsic q-credible region for φ. As mentioned

above, the reference expected intrinsic loss d(θ̃ |x) is often a convex function
of θ̃; in that case, for each q ∈ (0, 1) there is a unique (convex) intrinsic
q-credible region.

53



Example 26 Intrinsic binomial credible regions. Let r be the number of
successes observed in n independent Bernoulli trials with parameter θ.

Figure 4 Intrinsic 0.95-credible region for a binomial parameter.
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As described in Example 24, the reference posterior expected intrinsic loss
which corresponds to using θ̃ instead of the actual (unknown) θ is the
convex function d{θ̃ |n, r} of Equation (42), which is represented in the
upper panel of Figure 4 as a function of θ̃, for r = 10 and n = 50. Using
the invariance of the intrinsic loss with respect to one-to-one transform-
ations, and a normal approximation to the posterior distribution of the
approximate location parameter φ(θ) = 2

π arcsin
√

θ, it is found that

d{θ̃ |n, r}≈ 1
2 + 2 n

(
arcsin

√
θ̃ − arcsin

√
(r + 1

3)/(n + 2
3)

)2
.

A lowest posterior loss q-credible region consists of the set of θ̃ points with
posterior probability q and minimum expected loss. In this problem, the
intrinsic q-credible region R∗

q(r, n), is therefore obtained as the interval
R∗

q(r, n) = [θa(r, n), θb(r, n)] defined by the solution (θa, θb) to the system

{
d{θa |n, r} = d{θb |n, r},

∫ θb

θa

π(θ |n, r) dθ = q
}
.

In particular, the intrinsic 0.95-credible region is the set of θ̃ points with
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posterior expected loss smaller than 2.139 (shaded region in the lower
panel of Figure 4), which is R∗

0.95 = {θ̃; 0.105 ≤ θ̃ ≤ 0.321]. Notice that
this is neither a HPD interval nor a centred interval. The point with
minimum expected loss is the intrinsic estimator, θ∗ = 0.2034. Since in-
trinsic estimation is coherent under one-to-one reparametrizations, the
intrinsic estimator and the 0.95-intrinsic credible region of the log-odds,
ψ = ψ(θ) = log[θ/(1 − θ)] are immediately derived as ψ(θ∗) = −1.365 and
ψ(R∗

0.95) = [−2.144, −0.747].

It may be argued that, in practice, it is reasonable for credible regions to
give privilege to the most probable values of the parameters, as HPD regions
do. This is obviously incompatible with an invariance requirement, but it is
interesting to notice that, in one-parameter problems, intrinsic credible regions
are approximately HPD in the approximate location parametrization. Thus, in
Example 26, the 0.95-credible region for the approximate location parameter,
φ(θ) = 2

π arcsin
√

θ, φ(R∗
0.95) = [0.210, 0.384], is nearly an HPD interval for φ.

4.3 Hypothesis Testing

Let x be the available data, which are assumed to consist of one observation
from model M ≡ {p(x |θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λ}, parametrized in
terms of the vector of interest θ and a vector λ of nuisance parameters. The
posterior distribution π(θ |x) of the quantity of interest θ conveys immediate
intuitive information on the values of θ which, given M, might be declared to
be compatible with the observed data x, namely, those with a relatively high
probability density. Sometimes, a restriction, θ ∈ Θ0 ⊂ Θ, of the possible
values of the quantity of interest (where Θ0 may possibly consist of a single
value θ0) is suggested in the course of the investigation as deserving special
consideration, either because restricting θ to Θ0 would greatly simplify the
model, or because there are additional, context specific arguments suggesting
that θ ∈ Θ0. Intuitively, the (null) hypothesis H0 ≡ {θ ∈ Θ0} should be
judged to be compatible with the observed data x if there are elements in Θ0

with a relatively high posterior density. However, a more precise conclusion is
typically required and this is made possible by adopting a decision-oriented
approach. Formally, testing the hypothesis H0 ≡ {θ ∈ Θ0} is a decision
problem where the action space A = {a0, a1} only contains two elements: to
accept (a0) or to reject (a1) the proposed restriction.

To solve this decision problem, it is necessary to specify an appropriate loss
function, �(ai, θ), measuring the consequences of accepting or rejecting H0 as
a function of the actual value θ of the vector of interest. Notice that this
requires the statement of an alternative a1 to accepting H0; this is only to be
expected, for an action is taken not because it is good, but because it is better
than anything else that has been imagined. Given data x, the optimal action
will be to reject H0 if (and only if) the expected posterior loss of accepting
the null,

∫
Θ �(a0, θ) π(θ |x) dθ, is larger than the expected posterior loss of
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rejecting,
∫
Θ �(a1, θ) π(θ |x) dθ, that is, if (and only if)

∫
Θ

[�(a0, θ) − �(a1, θ)] π(θ |x) dθ =
∫
Θ

∆�(θ) π(θ |x) dθ > 0. (45)

Therefore, only the loss difference ∆�(Θ0, θ) = �(a0, θ)−�(a1, θ), which meas-
ures the advantage of rejecting H0 ≡ {θ ∈ Θ0} as a function of θ, has to be
specified: the hypothesis H0 should be rejected whenever the expected advant-
age of rejecting is positive.

A crucial element in the specification of the loss function is a description
of what is precisely meant by rejecting H0. By assumption a0 means to act
as if H0 were true, i.e., as if θ ∈ Θ0, but there are at least two options for the
alternative action a1. This may either mean (i) the negation of H0, that is to
act as if θ /∈ Θ0 or, alternatively, it may rather mean (ii) to reject the simplific-
ation implied by H0 and to keep the unrestricted model, θ ∈ Θ, which is true
by assumption. Both options have been analyzed in the literature, although it
may be argued that the problems of scientific data analysis, where hypothesis
testing procedures are typically used, are better described by the second al-
ternative. Indeed, an established model, identified by H0 ≡ {θ ∈ Θ0}, is often
embedded into a more general model, {θ ∈ Θ,Θ0 ⊂ Θ}, constructed to in-
clude promising departures from H0, and it is then required to verify whether
presently available data x are still compatible with θ ∈ Θ0, or whether the
extension to θ ∈ Θ is really required.

The simplest loss structure has, for all values of the nuisance parameter
vector λ, a zero-one form, with {�(a0, θ) = 0, �(a1, θ) = 1} if θ ∈ Θ0, and
{�(a0, θ) = 1, �(a1, θ) = 0} if θ /∈ Θ0, so that the advantage ∆�{Θ0, (θ, λ)} of
rejecting H0 is

∆�{Θ0, (θ, λ)} =

 1, if θ /∈ Θ0

−1, if θ ∈ Θ0.
(46)

With this (rather näıve) loss function it is immediately found that the optimal
action is to reject H0 if (and only if) Pr(θ /∈ Θ0 |x) > Pr(θ ∈ Θ0 |x).
Notice that this formulation requires that Pr(θ ∈ Θ0) > 0, that is, that
the (null) hypothesis H0 has a strictly positive prior probability. If θ is a
continuous parameter and Θ0 has zero measure (for instance if H0 consists
of a single point θ0), this requires the use of a non-regular “sharp” prior
concentrating a positive probability mass on θ0. With no mention to the loss
structure implicit behind, this solution was early advocated by Jeffreys (1961,
Ch. 5). However, this is known to lead to the difficulties associated to Lindley’s
paradox (Lindley, 1957; Bartlett, 1957; Bernardo, 1980; Robert, 1993; Brewer,
2002).

The intrinsic discrepancy loss may also be used to provide an attractive
general alternative to Bayesian hypothesis testing, the Bayesian reference cri-
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terion, BRC (Bernardo, 1999a; Bernardo and Rueda, 2002). This follows from
assuming that the loss structure is such that

∆�{Θ0, (θ, λ)} = δ{Θ0, (θ, λ)} − d∗, d∗ > 0, (47)

where δ{Θ0, (θ, λ)}, which describes as a function of (θ, λ) the loss suffered by
assuming that θ ∈ Θ0, is the intrinsic discrepancy between the distribution
p(x |θ, λ) and the set M0 ≡ {p(x |θ0, λ), θ0 ∈ Θ0, λ ∈ Λ}. The function
δ{Θ0, (θ, λ)}, which is invariant under one-to-one reparametrization, is non-
negative and it is zero if, and only if, θ ∈ Θ0. The constant d∗ is the (strictly
positive) advantage of being able to work with the null model when it is true,
measured in the same units as δ; the choice of d∗, in terms of posterior expected
log-likelihood ratios, is discussed below.

Definition 10 (Intrinsic hypothesis testing: BRC) Let available data x
consist of one observation from M ≡ {p(x |θ, λ), x ∈ X , θ ∈ Θ, λ ∈ Λ},
let M0 be the restricted model M0 ≡ {p(x |θ0, λ), θ0 ∈ Θ0, λ ∈ Λ} and let
δ{Θ0, (θ, λ)} be the intrinsic discrepancy between the distribution p(x |θ, λ)
and the set M0. The Bayesian reference criterion (BRC) rejects model M0

if the intrinsic statistic d(Θ0 |x), defined as the reference posterior expected
intrinsic loss, exceeds a critical value d∗. In traditional language, the null hy-
pothesis H0 ≡ {θ ∈ Θ0} is rejected if

d(Θ0 |x) = E[δ |x] =
∫
Θ

δ{Θ0, (θ, λ)} πδ(θ, λ |x) dθ dλ > d∗,

where πδ(θ, λ |x) ∝ p(x |θ, λ) πδ(θ, λ) is the reference posterior of (θ, λ)
when δ = δ{Θ0, (θ, λ)} is the quantity of interest. The conventional value
d∗ = log(100) may be used for scientific communication.

As the sample size increases, the expected value of d(Θ0 |x) under sampling
tends to one when H0 is true, and tends to infinity otherwise; thus d(Θ0 |x)
may be regarded as a continuous, positive measure of the expected loss (in
information units) from simplifying the model by accepting M0. In traditional
language, d(Θ0 |x) is a test statistic, and the BRC criterion rejects the null if
this intrinsic test statistic d(Θ0 |x) exceeds some critical value d∗. However, in
sharp contrast to frequentist hypothesis testing, the critical value d∗ is simply
a utility constant which measures the number of information units which the
decision maker is prepared to loose in order to be able to work with the null
model H0, not a function of sampling properties of the model.

The interpretation of the intrinsic discrepancy in terms of the minimum
posterior expected likelihood ratio in favour of the true model (see Section 2)
provides a direct calibration of the required critical value. Indeed, d(Θ0 |x)
is the minimum posterior expected log-likelihood ratio in favour of the true
model. For instance, values around log[10] ≈ 2.3 should be regarded as mild
evidence against H0, while values around log[100] ≈ 4.6 suggest strong evid-
ence against the null, and values larger than log[1000] ≈ 6.9 may be safely
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used to reject H0. Notice that, in contrast to frequentist hypothesis testing,
where it is hazily recommended to adjust the significance level for dimension-
ality and sample size, the intrinsic statistic in measured on an absolute scale
which remains valid for any sample size and any dimensionality.

Example 27 Testing the value of a normal mean. Let data consist of a
random sample x = {x1, . . . , xn} from a normal N(x |µ, σ) distribution,
and consider the “canonical” problem of testing whether or not these data
are compatible with some specific sharp hypothesis H0 ≡ {µ = µ0} on the
value of the mean. The intrinsic discrepancy is easily found to be

δ(µ0, µ |σ) =
n

2

(
µ − µ0

σ

)2

, (48)

a simple transformation of the standardized distance between µ and µ0,
which generalizes to δ(µ0, µ) = (n/2)(µ−µ0)

tΣ−1(µ−µ0), a linear func-
tion of the Mahalanobis distance, in the multivariate normal case.

Consider first the case where σ is assumed to be known. The refer-
ence prior for µ is then uniform; this is also the reference prior when the
parameter of interest is δ, since δ(µ0, µ) is a piecewise invertible func-
tion of µ (see Theorem 6). The corresponding posterior distribution, is
π(µ |x) = N(µ |x, σ/

√
n), (n ≥ 1). The expected value of δ(µ0, µ) with

respect to this posterior yields the corresponding intrinsic statistic,

d(µ0 |x) = 1
2(1 + z2), z =

x − µ0

σ/
√

n
(49)

a simple function of the standardized distance between the sample mean x
and µ0. As prescribed by the general theory, the expected value of d(µ0, |x)
under repeated sampling is one if µ = µ0, and increases linearly with n
otherwise. In this canonical example, to reject H0 whenever |z| > 1.96 (the
frequentist suggestion with the conventional 0.05 significance level), cor-
responds to rejecting H0 whenever d(µ0 |x) is larger than 2.42, a rather
weak evidence, since this means that the posterior expected likelihood
ratio against H0 is only about exp[2.42] = 11.25. Conversely, to reject
whenever posterior expected likelihood ratio against H0 is about 100, so
that d∗ = log[100] ≈ 4.6, is to reject whenever |z| > 2.86, which is close
to the conventional 3σ rule often used by engineers. The extreme 6σ rule,
apparently popular these days, would correspond to d∗ = 18.5 ≈ log[108].

If the scale parameter σ is also unknown, the intrinsic discrepancy is

δ{µ0, (µ, σ)} =
n

2
log

[
1 +

(
µ − µ0

σ

)2]
, (50)

which is not the same as (48). The intrinsic test statistic d(µ0, x) may then
be found as the expected value of δ{µ0, (µ, σ)} under the corresponding
joint reference posterior distribution πδ(µ, σ |x) when δ is the quantity of
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interest. After some algebra, the exact result may be expressed in terms
of hypergeometric functions (Bernardo, 1999a), but is very well approx-
imated by the simple function

d(µ0 |x) ≈ 1

2
+

n

2
log

(
1 +

t2

n

)
, (51)

where t is the conventional statistic t =
√

n − 1 (x−µ0)/s, written in terms
of the sample variance s2 =

∑
j(xj − x)2/n. For instance, for samples sizes

5, 30 and 1000, and using the threshold d∗ = log[100], the null hypo-
thesis H0 ≡ {µ = µ0} would be rejected whenever |t| is respectively larger
than 4.564, 3.073, and 2.871.

Example 28 A lady tasting tea. A lady claims that by tasting a cup of
tea made with milk she can discriminate whether milk has been poured
over the tea infusion or the other way round, and she is able to give
the correct answer in n consecutive trials. Are these results compatible
with the hypothesis that she is only guessing and has been lucky? The
example, a variation suggested by Neyman (1950, Sec. 5.2) to a problem
originally proposed by Fisher (1935, Sec. 2.5), has often been used to
compare alternative approaches to hypothesis testing. See Lindley (1984)
for a subjectivist Bayesian analysis.

The intrinsic objective Bayesian solution is immediate from the results
in Examples 24 and 26. Indeed, using Definition 10, if data are assumed
to consist of n Bernoulli observations and r successes have been observed,
the intrinsic statistic to test the precise null θ = θ0 is

d(θ0 | r, n) =
∫ 1

0
δ{θ0, θ |n}Be(θ | r + 1

2 , n − r + 1
2) dθ,

where δ{θ0, θ |n} is given by (7). In this case, one has r = n and θ0 = 1
2 . For

the values n = 8, n = 10 and n = 12 traditionally discussed, the intrinsic
test statistic, d(θ0 | r, n), respectively yields the values d(1

2 | 8, 8) ≈ 4.15,
d(1

2 | 10, 10) ≈ 5.41 and d(1
2 | 12, 12) ≈ 6.70. Since log[100] ≈ 4.61, the

hypothesis of pure guessing would not be rejected with n = 8 with the
conventional threshold d∗ = log[100], but would be rejected with n = 10
successes (and a fortiori with n = 12). Actually, the value of d(1

2 | 8, 8)
says that the observed data are only estimated to be about exp[4.15] ≈ 64
times more likely under the true model (unknown θ) that under the null
model (no discrimination power, θ = θ0 = 1

2). However, with n = 10
and n = 12 the observed data are respectively estimated to be about 224
and 811 times more likely under the true model that under the null.

The Bayesian reference criterion may also be used with non-nested problems.
Thus, given two alternative models for x ∈ X , M1 = {p1(x |θ1), θ1 ∈ Θ1}
and M2 = {p2(x |θ2), θ2 ∈ Θ2}, one may introduce the a new parameter α to
define a mixture model p(x |θ1, θ1, α) = p1(x |θ1)

α p2(x |θ2)
1−α (with either
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a continuous α ∈ [0, 1] or, more simply, a discrete α ∈ {0, 1}), and use BRC to
verify whether M1, or M2, or both, are compatible with the data, assuming
the mixture is. For further discussion on hypothesis testing and the develop-
ment of the Bayesian reference criterion see Bernardo (1982, 1985a, 1999a),
Bernardo and Bayarri (1985), Rueda (1992) and Bernardo and Rueda (2002).

5 Further Reading

Reference analysis already has a long history, but it still is a very active
area of research. The original paper on reference analysis, (Bernardo, 1979b),
is easily read and it is followed by a very lively discussion; Bernardo (1981),
extends the theory to general decision problems; see also Bernardo and Smith
(1994, Sec. 5.4.1) and Rabena (1998). Berger and Bernardo (1989, 1992c)
contain crucial mathematical extensions. Bernardo (1997) is a non-technical
analysis, in a dialogue format, of the foundational issues involved, and it is
followed by a discussion. A textbook level description of reference analysis is
provided in Bernardo and Smith (1994, Sec. 5.4); Bernardo and Ramón (1998)
contains a simple introduction to reference distributions. BRC, the Bayesian
reference criterion for hypothesis testing, was introduced by Bernardo (1999a)
and further refined in Bernardo and Rueda (2002). Intrinsic estimation was
introduced in Bernardo and Juárez (2003). Berger, Bernardo and Sun (2005)
contains the last mathematical developments of reference theory at the mo-
ment of writing.

Papers which contain either specific derivations or new applications of ref-
erence analysis include, in chronological order of the first related paper by the
same author(s), Bernardo (1977a,b, 1978, 1980, 1982, 1985a,b, 1999b), Bayarri
(1981, 1985), Ferrándiz (1982, 1985), Sendra (1982), Eaves (1983a,b, 1985),
Armero (1985), Bernardo and Bayarri (1985), Chang and Villegas (1986),
Chang and Eaves (1990), Hills (1987), Mendoza (1987, 1988, 1990), Bernardo
and Girón (1988), Lindley (1988), Berger and Bernardo (1989, 1992a,b,c),
Clarke and Barron (1990, 1994), Polson and Wasserman (1990), Phillips (1991),
Severini (1991, 1993, 1995, 1999), Ye and Berger (1991), Ghosh and Mukerjee
(1992), Singh and Upadhyay (1992), Stephens and Smith (1992), Berger and
Sun (1993), Clarke and Wasserman (1993), Dey and Peng (1993, 1995), Kuboki
(1993, 1998), Liseo (1993, 2003, 2005), Ye (1993, 1994, 1995, 1998), Berger and
Yang (1994), Kubokawa and Robert (1994), Sun (1994, 1997), Sun and Berger
(1994, 1998), Yang and Berger (1994, 1997), Datta and J. K. Ghosh (1995a,b),
Datta and M. Ghosh (1995a); Datta and M. Ghosh (1995b), Giudici (1995),
Ghosh, Carlin and Srivastava (1995), du Plessis, van der Merwe and Groene-
wald (1995), Sun and Ye (1995, 1996, 1999), de Waal, Groenewald and Kemp
(1995), Yang and Chen (1995), Bernard (1996), Clarke (1996), Ghosh and
Yang (1996), Armero and Bayarri (1997), Fernández, Osiewalski and Steel
(1997), Garvan and Ghosh (1997, 1999), Ghosal and Samanta (1997), Ghosal
(1997, 1999), Sugiura and Ishibayashi (1997), Berger, Philippe and Robert
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(1998), Bernardo and Ramón (1998), Chung and Dey (1998, 2002), Scholl
(1998), Sun, Ghosh and Basu (1998), Philippe and Robert (1998), Berger,
Liseo and Wolpert (1999), Burch and Harris (1999), Brewer (1999), Scricciolo
(1999), Vernotte and Zalamansky (1999), Yuan and Clarke (1999), Berger, Per-
icchi and Varshavsky (1998), Lee (1998), Fernández and Steel (1998b, 1999a,b,
2000), Mendoza and Gutiérrez-Peña (1999), Mukerjee and Reid (1999, 2001),
Aguilar and West (2000), Eno and Ye (2000, 2001), Elhor and Pensky (2000),
Fernández and Steel (2000), Kim, Kang and Cho (2000), van der Linde (2000),
Berger, de Oliveira and Sansó (2001), Fan (2001), Ghosh and Kim (2001),
Ghosh, Rousseau and Kim (2001), Kim, Chang and Kang (1961), Kim, Kang
and Lee (2001, 2002), Komaki (2001, 2004), Natarajan (2001), Rosa and Gian-
ola (2001), Aslam (2002a,b), Daniels (2002), Datta, Ghosh and Kim (2002),
Millar (2002), Philippe and Rousseau (2002), Pretorius and van der Merwe
(2002), Tardella (2002), Consonni and Veronese (2003), Datta and Smith
(1995a), Fraser, Reid, Wong and Yi (2003), Ghosh and Heo (2003a,b), Ghosh,
Yin and Kim (2003), Gutiérrez-Peña and Rueda (2003), He (2003), Leucari
and Consonni (2003), Lauretto, Pereira, Stern and Zacks (2003), Madruga,
Pereira and Stern (2003), Ni and Sun (2003), Sareen (2003), Consonni, Ver-
onese, and Gutiérrez-Peña (2004), Sun and Ni (2004), Grünwald and Dawid
(2004), Roverato and Consonni (2004), Stern (2004a,b), van der Merwe and
Chikobvu (2004) and Liseo and Loperfido (2005).

This chapter concentrates on reference analysis. It is known, however, that
ostensibly different approaches to the derivation of objective priors often pro-
duce the same result, a testimony of the robustness of many solutions to
the definition of what an appropriate objective prior may be in a particu-
lar problem. Many authors have proposed alternative objective priors (often
comparing the resulting inferences with those obtained within the frequent-
ist paradigm), either as general methods or as ad hoc solutions to specific
inferential problems, and a few are openly critical with objective Bayesian
methods. Relevant papers in this very active field of Bayesian mathematical
statistics include (in chronological order of their first related paper) Laplace
(1825), Jeffreys (1946, 1955, 1961), Perks (1947), Haldane (1948), Barnard
(1952, 1988), Good (1952, 1969, 1981, 1986), Lindley (1958, 1961, 1965), Stein
(1959, 1962, 1986), Welch and Peers (1963), Geisser and Cornfield (1963),
Stone (1963, 1965, 1970, 1976), Box and Cox (1964), Hartigan (1964, 1965,
1966, 1971, 1996, 1998, 2004), Geisser (1965, 1979, 1980, 1984, 1993), Hill
(1965), Novick and Hall (1965), Peers (1965, 1968), Stone and Springer (1965),
Welch (1965), Freedman (1966, 1995), Jaynes (1968, 1976, 1982, 1985, 1989),
Cornfield (1969), Novick (1969), Villegas (1969, 1971, 1977a,b, 1981, 1982),
Zidek (1969), DeGroot (1970, Ch. 10), Kappenman, Geisser and Antle (1970),
Kashyap (1971), Zellner (1971); Zellner (1977, 1983, 1986a, 1988, 1991, 1996,
1997), Box and Tiao (1973, Sec. 1.3), Piccinato (1973, 1977), Aitchison and
Dunsmore (1975), Rai (1976), Akaike (1978, 1980a,b,c, 1983), Florens (1978,
1982), Heath and Sudderth (1978, 1989), Banerjee and Bhattacharyya (1979),
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Berger (1979), Evans and Nigm (1980), Miller (1980), Zellner and Siow (1980),
Pericchi (1981), Torgersen (1981), Fatti (1982), Gokhale and Press (1982),
Eaton (1982, 1992), Dawid (1983, 1991) Hartigan (1983, Ch. 5) Rissanen
(1983, 1986, 1987, 1988, 1989), Sono (1983), Gatsonis (1984), Inaba (1984),
Csiszár (1985, 1991), DasGupta (1985), Fraser, Monette and Ng (1985), Poirier
(1985, 1994), Spiegelhalter (1985), Sweeting (1985, 1994, 1995a,b, 1996, 2001),
Chang and Villegas (1986), Efron (1986, 1993), Raftery and Akman (1986),
Casella and Hwang (1987), Cifarelli and Regazzini (1987), Chaloner (1987),
Cox and Reid (1987), Maryak and Spall (1987), Smith and Naylor (1987),
Stewart (1987), Wallace and Freeman (1987), Agliari and Calvi-Parisetti (1988),
Howlader and Weiss (1988), Raftery (1988), de Waal and Nel (1988), Hill and
Spall (1988, 1994), Consonni and Veronese (1989a,b, 1992, 1993), Crowder
and Sweeting (1989), Kass (1989, 1990), Erickson (1989), Pole and West
(1989), Tibshirani (1989), Tiwari, Chib and Jammalamadaka (1989), Up-
adhyay and Pandey (1989), Berger and Robert (1900), Chang and Eaves
(1990), Lee and Shin (1990), Spall and Hill (1990), Ogata (1990), DiCic-
cio and Martin (1991), Ibrahim and Laud (1991), Joshi and Shah (1991),
Meeden and Vardeman (1991), Rodŕıguez (1991), Ghosh and Mukerjee (1991,
1992, 1993a,b, 1995a,b), Pericchi and Walley (1991), Crowder (1992), Eaves
and Chang (1992), Fan and Berger (1992), Polson (1992), Sansó and Per-
icchi (1992, 1994), Tsutakawa (1992), Vaurio (1992), George and McCulloch
(1993), Mukerjee and Dey (1993), Nicolaou (1993), DiCiccio and Stern (1994),
Paris (1994), Upadhyay and Smith (1989), Belzile and Angers (1995), Datta
and M. Ghosh (1995a), Mukhopadhyay and Ghosh (1995), Pericchi and Sansó
(1995), Wasserman and Clarke (1995), de Alba and Mendoza (1996), Atwood
(1996), Berger and Strawderman (1996), Datta (1996), Fraser and Reid (1996,
2002), Keyes and Levy (1996), Mengersen and Robert (1996), Reid (1996),
Upadhyay, Agrawal and Smith (1989), Wasserman (1996, 2000), Clarke and
Sun (1997), Ghosh and Meeden (1997), Ibrahim (1997), Fraser, McDunnough
and Taback (1997), Moreno and Girón (1997), Mukhopadhyay and DasGupta
(1997), Mukerjee and Ghosh (1997), Barron, Rissanen and Yu (1998), Chao
and Phillips (1998, 2002), Diaconis and Freedman (1998), Eaton and Sudderth
(1998, 1999, 2002, 2004), Fernández and Steel (1998a), Hadjicostas (1998),
Ibrahim and Chen (1998), Natarajan and McCulloch (1998), Blyth and Smith
(1998), Barron (1999), Daniels (1999, 2005), Fraser, Reid and Wu (1999),
Marinucci and Petrella (1999), Pauler, Wakefield and Kass (2003), Wallace
and Dowe (1999), Walker and Muliere (1999), Walker and Gutiérrez-Peña
(1999), Chen , Ibrahim and Shao (2000), Datta, Mukerjee, Ghosh and Sweeting
(2000), Datta, Ghosh and Mukerjee (2000), Ghosh, Chen, Ghosh and Agresti
(2000a); Ghosh, Ghosh, Chen and Agresti (2000b), Kim and Ibrahim (2000),
Kim Lee and Kang (2000), Lee and Chang (2000), Lee and Hwang (2000),
Lunn, Thomas, Best and Spiegelhalter (2000), McCulloch, Polson and Rossi
(2000), Mendoza and Gutiérrez-Peña (2000), Natarajan and Kass (2000), Oh
and Kim (2000), Price and Bonett (2000), Rousseau (2000), Strawderman
(2000), Wolfinger and Kass (2000), Brown, Cai and DasGupta (2001, 2002),
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Delampady et al. (2001), Robert and Rosenthal (2001), Sun, Tsutakawa and
He (2001), Upadhyay, Vasishta and Smith (2001), Cho and Baek (2002), Ever-
son and Bradlow (2002), Fraser and Yi (2002), Ghosh and Samanta (2002),
Hartigan and Murphy (2002), Meng and Zaslavsky (2002), Molitor and Sun
(2002), Shieh and Lee (2002), Singh, Gupta and Upadhyay (2002), Severini,
Mukerjee and Ghosh (2002), Lee (2003), Mukerjee and Chen (2003), Strachan
and van Dijk (2003), Upadhyay and Peshwani (2003), Datta and Mukerjee
(2004), Gutiérrez-Peña and Muliere (2004) and Hobert, Marchev and Sch-
weinsberg (2004).

For reviews of many of these, see Dawid (1983), Bernardo and Smith (1994,
Sec. 5.6.2), Kass and Wasserman (1996) and Bernardo (1997).
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caré 18, 309–317.
Fraser, D. A. S., McDunnough, P. and Taback, N. (1997). Improper priors, posterior

asymptotic normality, and conditional inference. Advances in the Theory and
Practice of Statistics: A Volume in Honor of Samuel Kotz (N. L. Johnson and N.
Balakrishnan, eds.) New York: Wiley, 563–569.

Fraser, D. A. S., Monette, G., and Ng, K. W. (1985). Marginalization, likelihood and
structural models, Multivariate Analysis 6 (P. R. Krishnaiah, ed.). Amsterdam:
North-Holland, 209–217.

Fraser, D. A. S., Reid, N. (1996). Bayes posteriors for scalar interest parameters.
Bayesian Statistics 5 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M.
Smith, eds.). Oxford: University Press, 581–585.

Fraser, D. A. S. and Reid, N. (2002). Strong matching of frequentist and Bayesian
parametric inference. J. Statist. Planning and Inference 103, 263–285.

Fraser, D. A. S., Reid, N., Wong, A. and Yi, G. Y. (2003). Direct Bayes for interest
parameters . Bayesian Statistics 7 (J. M. Bernardo, M. J. Bayarri, J. O. Ber-
ger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.). Oxford:
University Press, 529–534.

Fraser, D. A. S., Reid, N. and Wu, J. (1999). A simple general formula for tail
probabilities for frequentist and Bayesian inference. Biometrika 86, 249–264.

Fraser, D. A. S. and Yi, G. Y. (2002). Location reparametrization and default priors
for statistical analysis. J. Iranian Statist. Soc. 1, 55–78.

Freedman, D. A. (1966). A note on mutual singularity of priors. Ann. Math. Sta-
tist. 37, 375–381.

71



Freedman, D. A. (1995). Some issues in the foundation of statistics. Topics in the
Foundation of Statistics (B. C. van Fraassen, ed.) Dordrecht: Kluwer19–83. (with
discussion).

Garvan, C. W. and Ghosh, M. (1997). Noninformative priors for dispersion models.
Biometrika 84, 976–982.

Garvan, C. W. and Ghosh, M. (1999). On the property of posteriors for dispersion
models. J. Statist. Planning and Inference 78, 229–241.

Gatsonis, C. A. (1984). Deriving posterior distributions for a location parameter: A
decision theoretic approach. Ann. Statist. 12, 958–970.

Geisser, S. (1965). Bayesian estimation in multivariate analysis. Ann. Math. Sta-
tist. 36, 150–159.

Geisser, S. (1979). In discussion of Bernardo (1979b). J. Roy. Statist. Soc. B 41,
136–137.

Geisser, S. (1980). A predictivist primer. Bayesian Analysis in Econometrics and
Statistics: Essays in Honor of Harold Jeffreys (A. Zellner, ed.). Amsterdam:
North-Holland, 363–381.

Geisser, S. (1984). On prior distributions for binary trials. J. Amer. Statist. As-
soc. 38, 244–251 (with discussion).

Geisser, S. (1993). Predictive inference: An introduction. London: Chapman and
Hall

Geisser, S. and Cornfield, J. (1963). Posterior distributions for multivariate normal
parameters. J. Roy. Statist. Soc. B 25, 368–376.

George, E. I. and McCulloch, R. (1993). On obtaining invariant prior distributions.
J. Statist. Planning and Inference 37, 169–179.

Ghosal, S. (1997). Reference priors in multiparameter nonregular cases. Test 6,
159–186.

Ghosal, S. (1999). Probability matching priors for non-regular cases. Biometrika 86,
956–964.

Ghosal, S. and Samanta, T. (1997). Expansion of Bayes risk for entropy loss and
reference prior in nonregular cases. Statistics and Decisions 15, 129–140.

Ghosal, S., Ghosh, J. K. and Ramamoorthi, R. V. (1997). Non-informative priors
via sieves and packing numbers. Advances in Decision Theory and Applications
( S. Panchpakesan and N. Balakrisnan, eds.) Boston: Birkhauser, 119–132.

Ghosh, J. K. and Mukerjee, R. (1991). Characterization of priors under which
Bayesian and frequentist Bartlett corrections are equivalent in the multivariate
case. J. Multivariate Analysis 38, 385–393.

Ghosh, J. K. and Mukerjee, R. (1992). Non-informative priors. Bayesian Statistics 4
(J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford:
University Press, 195–210 (with discussion).

Ghosh, J. K. and Mukerjee, R. (1993a). Frequentist validity of highest posterior
density regions in the multiparameter case. Ann. Math. Statist. 45, 293–302;
corr: 602.

Ghosh, J. K. and Mukerjee, R. (1993b). On priors that match posterior and fre-
quentist distribution functions. Can. J. Statist. 21, 89–96.

Ghosh, J. K. and Mukerjee, R. (1995a). Frequentist validity of highest posterior
density regions in the presence of nuisance parameters. Statistics and De-
cisions 13, 131–139.

72



Ghosh, J. K. and Mukerjee, R. (1995b). On perturbed ellipsoidal and highest
posterior density regions with approximate frequentist validity. J. Roy. Statist.
Soc. B 57, 761–769.

Ghosh, J. K. and Samanta, T. (2002). Nonsubjective Bayes testing – An overview.
J. Statist. Planning and Inference 103, 205–223.

Ghosh, M., Carlin, B. P. and Srivastava, M. S. (1995). Probability matching priors
for linear calibration. Test 4, 333–357.

Ghosh, M., Chen, M.-H., Ghosh, A. and Agresti, A. (2000a). Hierarchical Bayesian
analysis of binary matched pairs data. Statistica Sinica 10, 647–657.

Ghosh, M., Ghosh, A., Chen, M.-H. and Agresti, A. (2000b). Noninformative priors
for one-parameter item response models. J. Statist. Planning and Inference 88,
99–115.

Ghosh M. and Heo J. (2003). Default Bayesian priors for regression models with
first-order autoregressive residuals. J. Time Series Analysis 24, 269–282.

Ghosh, M., and Heo J. (2003). Noninformative priors, credible sets and bayesian hy-
pothesis testing for the intraclass model. J. Statist. Planning and Inference 112,
133–146.

Ghosh, M., and Meeden G. (1997). Bayesian Methods for Finite Population
Sampling London: Chapman and Hall.

Ghosh, M. and Mukerjee, R. (1998). Recent developments on probability matching
priors. Applied Statistical Science III (S. E. Ahmed, M. Ashanullah and B. K.
Sinha eds.) New York: Science Publishers, 227–252.

Ghosh, M., Rousseau, J. and Kim, D. H. (2001). Noninformative priors for the
bivariate Fieller-Creasy problem. Statistics and Decisions 19, 277–288.

Ghosh, M. and Yang, M.-Ch. (1996). Non-informative priors for the two sample
normal problem. Test 5, 145–157.

Ghosh, M. and Kim, Y.-H. (2001). The Behrens-Fisher problem revisited: a Bayes-
frequentist synthesis. Can. J. Statist. 29, 5–17.

Ghosh, M., Yin, M. and Kim, Y.-H. (2003). Objective Bayesian inference for ratios
of regression coefficients in linear models. Statistica Sinica 13, 409–422.

Giudici, P. (1995). Bayes factors for zero partial covariances. J. Statist. Planning
and Inference 46, 161–174.

Gokhale, D. V. and Press, S. J. (1982). Assessment of a prior distribution for the cor-
relation coefficient in a bivariate normal distribution. J. Roy. Statist. Soc. A 145,
237–249.

Good, I. J. (1952). Rational decisions. J. Roy. Statist. Soc. B 14, 107–114.
Good, I. J. (1969). What is the use of a distribution? Multivariate Analysis 2

(P. R. Krishnaiah, ed.). New York: Academic Press, 183–203.
Good, I. J. (1981). Flexible priors for estimating a normal distribution. J. Statist.

Computation and Simulation 13, 151–153.
Good, I. J. (1986). Invariant hyperpriors. J. Statist. Computation and Simula-

tion 24, 323-324.
Goudie, I. B. J. and Goldie, C. M. (1981). Initial size estimation for the pure death

process. Biometrika 68. 543–550.
Grünwald, P. D. and Dawid, A. P. (2004). Game theory, maximum entropy, min-

imum discrepancy and robust Bayesian decision theory. Ann. Statist. 32, 1367-
1433.

73



Gutiérrez-Peña, E. (1992). Expected logarithmic divergence for exponential families.
Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M.
Smith, eds.). Oxford: University Press, 669–674.

Gutiérrez-Peña, E. and Muliere, P. (2004). Conjugate priors represent strong pre-
experimental assumptions. Scandinavian J. Statist. 31, 235–246.

Gutiérrez-Peña, E. and Rueda, R. (2003). Reference priors for exponential families.
J. Statist. Planning and Inference 110, 35–54.

Hadjicostas, P. (1998). Improper and proper posteriors with improper priors in a
hierarchical model with a beta-binomial likelihood. Comm. Statist. Theory and
Methods 27, 1905–1914.

Hadjicostas, P. and Berry, S. M. (1999). Improper and proper posteriors with im-
proper priors in a Poisson-gamma hierarchical model. Test 8, 147–166.

Haldane, J. B. S. (1948). The precision of observed values of small frequencies.
Biometrika 35, 297–303.

Hartigan, J. A. (1964). Invariant prior distributions. Ann. Math. Statist. 35, 836–
845.

Hartigan, J. A. (1965). The asymptotically unbiased prior distribution. Ann. Math.
Statist. 36, 1137–1152.

Hartigan, J. A. (1966). Note on the confidence prior of Welch and Peers. J. Roy.
Statist. Soc. B 28, 55-56.

Hartigan, J. A. (1971). Similarity and probability. Foundations of Statistical In-
ference (V. P. Godambe and D. A. Sprott, eds.). Toronto: Holt, Rinehart and
Winston, 305–313 (with discussion).

Hartigan, J. A. (1983). Bayes Theory. Berlin: Springer.
Hartigan, J. A. (1996). Locally uniform prior distributions. Ann. Statist. 24, 160–

173.
Hartigan, J. A. (1998). The maximum likelihood prior. Ann. Statist. 26, 2083–2103.
Hartigan, J. A. (2004). Uniform priors on convex sets improve risk. Statistics and

Probability Letters 67, 285–288.
Hartigan, J. A. and Murphy, T. B. (2002). Inferred probabilities. J. Statist. Planning

and Inference 105, 23–34.
He, C. Z. (2003). Bayesian modelling of age-specific survival in bird nesting studies

under irregular visits. Biometrics 59, 962–973.
Heath, D. and Sudderth, W. (1978). On finitely additive priors, coherence, and

extended admissibility. Ann. Statist. 6, 333–345.
Heath, D. and Sudderth, W. (1989). Coherent inference from improper priors and

from finitely additive priors. Ann. Statist. 17, 907–919.
Hill, B. M. (1965). Inference about variance components in the one-way model.

J. Amer. Statist. Assoc. 60, 806–825.
Hill, S. D. and Spall, J. C. (1988). Shannon information-theoretic priors for state-

space model parameters. Bayesian Analysis of Time series and Dynamic Models
(J. C. Spall, ed.). New York: Marcel Dekker, 509–524.

Hill, S. D. and Spall, J. C. (1994). Sensitivity of a Bayesian analysis to the prior
distribution. IEEE Trans. Systems, Man and Cybernetics 24, 216–221.

Hills, S. E. (1987). Reference priors and identifiability problems in non-linear mod-
els. The Statistician 36, 235–240.

74



Hobert, J. P. and Casella, G. (1996). The effect of improper priors on Gibbs sampling
in hierarchical linear mixed models. J. Amer. Statist. Assoc. 91, 1461–1473.

Hobert, J. P. and Casella, G. (1996). Functional compatibility, markov chains and
Gibbs sampling with improper posteriors. J. Comp. Graphical Statist. 7, 42-60.

Hobert, J. P., Marchev, D. and Schweinsberg, J. (2004). Stability of the tail markov
chain and the evaluation of improper priors for an exponential rate parameter.
Bernoulli 10, 549–564.

Howlader, H. A. and Weiss, G. (1988). Bayesian reliability estimation of a two
parameter Cauchy distribution. Biom. J. 30, 329–337.

Ibrahim, J. G. (1997). On properties of predictive priors in linear models. Amer.
Statist. 51, 333–337.

Ibrahim, J. G. and Chen, M.-H. (1998). Prior distributions and Bayesian computa-
tion for proportional hazards models. Sankhya B 60, 48–64.

Ibrahim, J. G. and Laud, P. W. (1991). On Bayesian analysis of generalized linear
models using Jeffreys’ prior. J. Amer. Statist. Assoc. 86, 981–986.

Ibragimov, I. A. and Khasminskii, R. Z. (1973). On the information in a sample
about a parameter. Proc. 2nd Internat. Symp. Information Theory. (B. N. Petrov
and F. Csaki, eds.), Budapest: Akademiaikiadó, 295–309.
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Hipótesis. Ph.D. Thesis, Universitat de València, Spain.
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